

"A 38 year old female with muscle weakness....."

Komal U Hafeez, MD Aziz I Shaibani, MD

History

- A 38-year-old woman presented with painless proximal muscle weakness since she was 5 years old. It was largely attributed to her being overweight.
- She also reported dysphagia and generalized fatigue.
- Diplopia to far vision for 2 years. Ophthalmologic exam normal.
- No pain in extremities, skin changes, shortness of breath, exercise induced muscle cramps, hearing impairment, palpitations, seizures and speech difficulty.

History

Medications: Vitamin supplements.

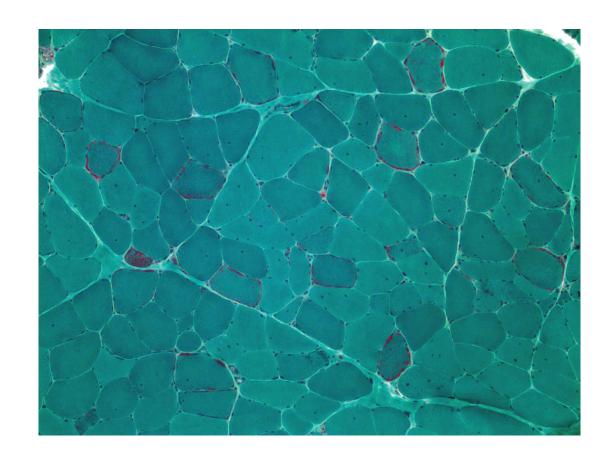
• Family History: Mother had proximal muscle weakness.

Brother with big calf muscles.

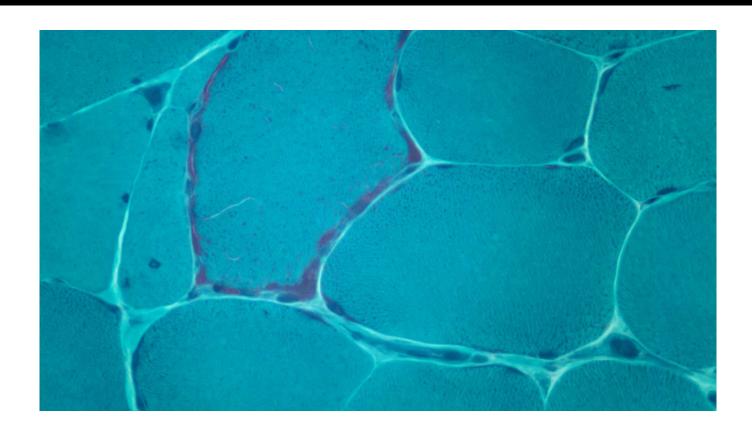
Grandfather had dysphagia.

Two sons (10 and 6-year old) with no weakness.

• PMH: OCD and Raynaud's phenomena.

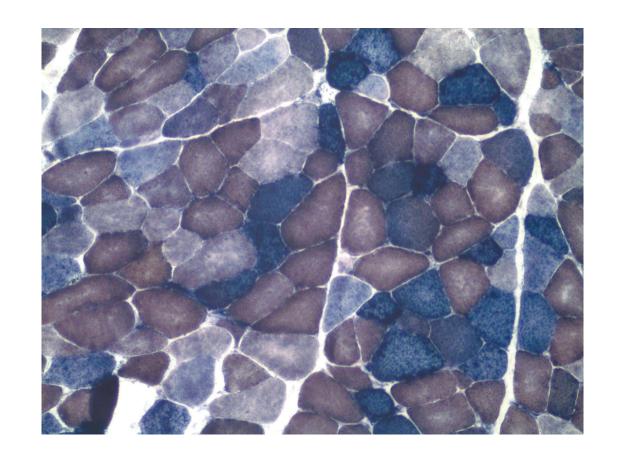


Labs and Imaging


- CBC, CMP and TSH were unremarkable. CK was elevated to 503 U/L.
- Autoimmune panel including ANA, dsDNA, SSA, SSB, Sm, RNP, scl-70, centromere B, Ribosomal P were negative.
- MRI pelvis and thighs without contrast: symmetric fatty infiltration of pelvic and thigh muscles with reduced muscle bulk.
- Electromyography: No myogenic or neurogenic pattern.

Muscle Biopsy revealed mitochondrial myopathy

Modified Gromori
 Trichrome stain
 showing ragged red
 fibers.



Magnified Trichrome stain (400X)

Muscle Biopsy

- COX counterstained by SDH.
- Many COX negative fibers that stained positive with SDH (blue fibers).

Any thoughts on differential?

What next diagnostic test you would like?

Mitochondrial genome plus Mito Nuclear gene panel

Mitochondrial genome sequencing and deletion analysis of muscle sample:

3 large deletions of mitochondrial genome: 10.7kb, 12.6 and 9.6 kb.

The sum total of heteroplasmy of these deletions was estimated to be less than 15 percent.

 Next generation sequencing and deletion/duplication analysis of 319 nuclear genes using blood sample:

Deoxyguanosine (DGUOK) kinase gene mutations

- 1) c.195 G>A in exon 2 and
- 2) c.462T>A in exon 4.

Diagnosis

DGUOK related autosomal recessive multiple mitochondrial deletion syndrome producing proximal muscle weakness and progressive external ophthalmoplegia.

Mitochondrial Myopathy

- Mitochondrial myopathy is a disease of skeletal muscles, with or without central nervous system involvement, caused by defective mitochondrial metabolism.
- It is caused by defects in nuclear or mitochondrial DNA.
- Nuclear genes responsible for maintenance of mtDNA:

POLG, POLG2, C10ORF2, TYMP, SUCLA2, SUCLG1, TK2, RR2MB and DGUOK

Defects in these genes affect **mtDNA** content (number of copies) or cause **mtDNA** deletions.

Deoxyguanosine Kinase (DGUOK)

- The enzyme DGUOK is encoded by the nuclear DNA and transported into the mitochondria.
- It is responsible for <u>phosphorylation</u> of <u>purinedeoxyribonucleosides</u> in the <u>mitochondrial</u> matrix.
- Loss of function mutations in *DGUOK* are associated with autosomal recessive inheritance of three main phenotypes:
 - MtDNA depletion syndrome-3
 - Noncirrhotic portal hypertension
 - Autosomal recessive progressive external ophthalmoplegia (PEO) with mtDNA deletions.

DGUOK gene related myopathy

- Mutations in *DGUOK* have largely been described in mtDNA depletion syndromes.
- Very few cases of myopathy have been observed.
- Of those reported, most cases had adult-onset of symptoms.
- However, our case had symptom-onset in childhood with no liver or cardiac disease.

c.195 G>A (W65X)

- The c.195 G>A mutation is predicted to produce a p.Trp65Ter nonsense pathogenic variant.
- This pathogenic variant is predicted to cause loss of normal protein function either through protein truncation or mRNA decay.
- It has been reported in association with mitochondrial DNA depletion syndrome producing neonatal hepatocerebral disease in trans to another truncating mutation.

c.462 T>A (N154K)

- The second variant, c.462 T>A, is predicted to result in the Asn154Lys substitution.
- It has been reported in cases of adult-onset PEO and mitochondrial myopathy in trans with other pathogenic variants.
- The affected cases described previously had evidence of DNA depletion and decreased enzyme activity in muscle biopsies.

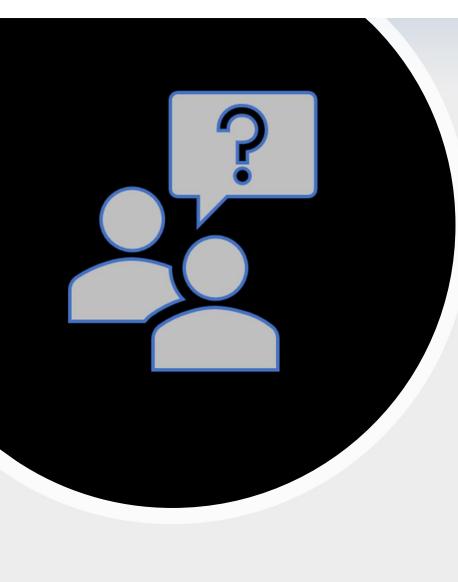
Primary sequence of DGUOK

 The position of asparagine (N) in different species including humans (Hs), mouse (Mm), zebrafish (Dr) & Drosophila (Dm).

Diagram courtesy:
Paolo Moretti, MD
University of Utah

Hs	Y	1	F	Α	K	N	L	F	E	Ν	G	159
Mm	Y	1	F	Α	K	N	L	F	E	Ν	G	159
Dr	Y	1	F	Α	L	N	М	F	Α	L	G	151
Dm	Y	C	F	V	E	N	М	R	R	N	G	122

Take Home Point


- Our case expands the phenotypic spectrum of DGUOK mutations and highlights the importance of NGS in children and adults to timely diagnose mitochondrial myopathy.
- The markedly slow progression of symptoms like in our case, sometimes result in delay in diagnosis.
- Longitudinal studies are needed to further investigate the course and predict the outcomes in patients harboring *DGUOK* mutations.

References

- 1. El-Hattab AW, Scaglia F. Mitochondrial DNA depletion syndromes: review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics. 2013;10(2):186-98.
- 2. Freisinger P, Fütterer N, Lankes E, Gempel K, Berger TM, Spalinger J, et al. Hepatocerebral mitochondrial DNA depletion syndrome caused by deoxyguanosine kinase (DGUOK) mutations. Archives of neurology. 2006;63(8):1129-34.
- Buchaklian AH, Helbling D, Ware SM, Dimmock DP. Recessive deoxyguanosine kinase deficiency causes juvenile onset mitochondrial myopathy. Molecular genetics and metabolism. 2012;107(1):92-4.
- 4. Dimmock D, Zhang Q, Dionisi-Vici C, Carrozzo R, Shieh J, Tang LY, et al. Clinical and molecular features of mitochondrial DNA depletion due to mutations in deoxyguanosine kinase. Human mutation. 2008;29(2):330-1.
- 5. Ronchi D, Garone C, Bordoni A, Gutierrez Rios P, Calvo SE, Ripolone M, et al. Next-generation sequencing reveals DGUOK mutations in adult patients with mitochondrial DNA multiple deletions. Brain. 2012;135(11):3404-15.
- 6. Copeland WC. Defects in mitochondrial DNA replication and human disease. Critical reviews in biochemistry and molecular biology. 2012;47(1):64-74.
- 7. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285.
- 8. Shaibani, Aziz, et al. "Mitochondrial neurogastrointestinal encephalopathy due to mutations in RRM2B." Archives of neurology 66.8 (2009): 1028-1032.

Questions?