
Update in COVID-19 Management: Treatments and Vaccines

Update in Internal Medicine 2021

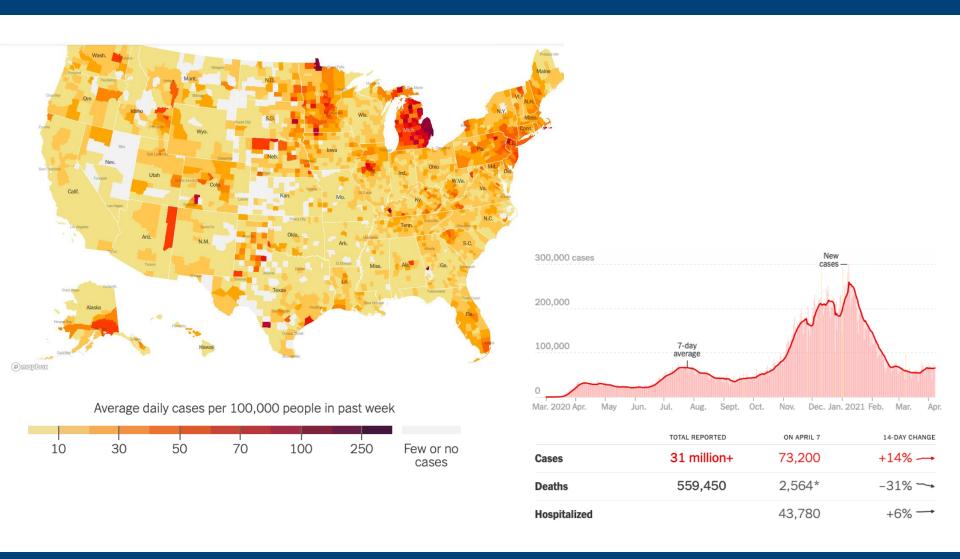
Saturday, April 10th, 2021

James "Brad" Cutrell, MD FIDSA

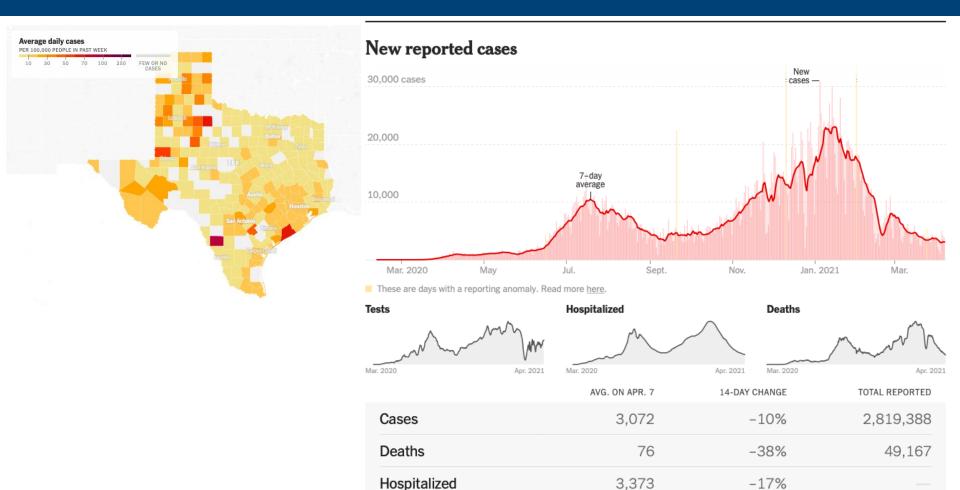
Associate Professor, Internal Medicine

Division of Infectious Diseases and Geographic Medicine

UT Southwestern Medical Center


Disclosures

• I have no financial disclosures.

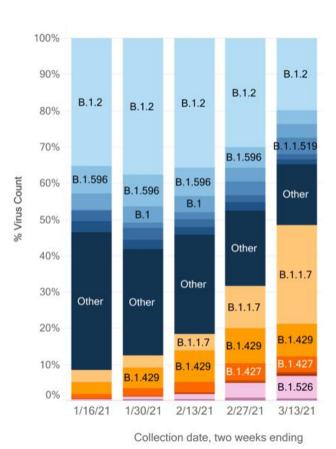

 I have served as an unpaid site Co-investigator for COVID-19 clinical trials sponsored by the NIH, Gilead, Regeneron, and Genentech.

• I will be discussing off-label investigational treatments for COVID-19.

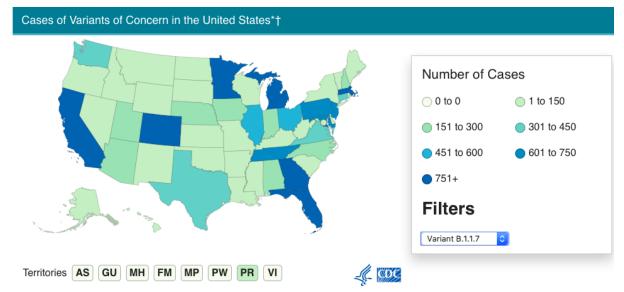
COVID-19 Trends in the United States

COVID-19 Trends in Texas

Tests


73,373

+8%

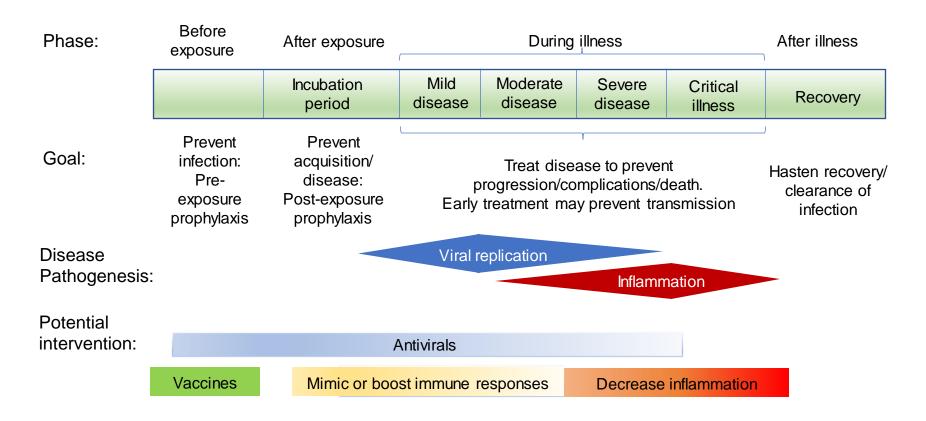

SARS-CoV-2 Variants of Concern

Key SARS-CoV-2 variants of concern	B.1.1.7	B.1.351	P.1	B.1.427/ B1.429
Location/Date first identified	United Kingdom, Sep 2020	South Africa, Oct 2020	Brazil and Japan, Jan 2021	California, July 2020
Identified in US to date	Yes	Yes	Yes	Yes
Impact on vaccine efficacy?	No	Some reduced efficacy	Likely some reduced efficacy	Possible some impact
Impact on monoclonal antibody therapies?	No	Reduced efficacy to some but not all Ab products	Reduced efficacy to some but not all Ab products	Reduced efficacy to some but not all Ab products
Primary Concerns	Increased spread by ~ 50%, more severe disease	Increased spread, some antibody escape	Increased spread, some antibody escape	Increased spread by 20%, some antibody escape

SARS-CoV-2 Variants of Concern in US

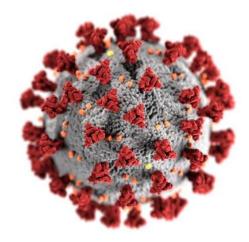
B.1.1.7 ("UK variant") now dominant variant in US but distributed heterogeneously across the country

Treating COVID-19

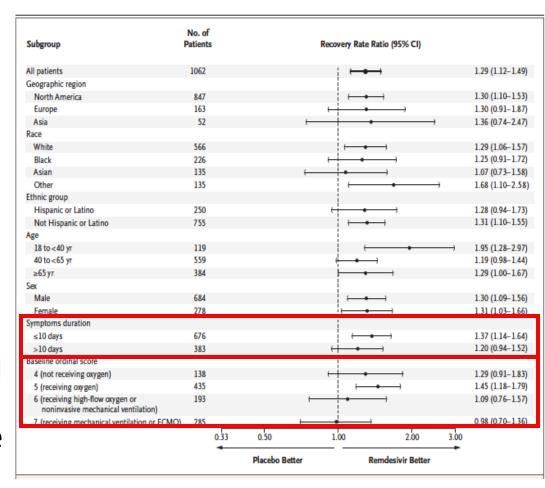

Pharmacologic Treatments

Disease Severity in COVID-19

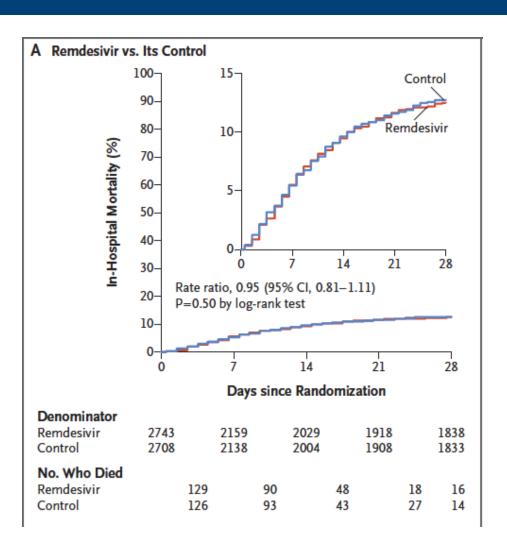
Disease Category	Clinical Definition
Asymptomatic COVID-19	Viral replication without symptoms
Mild COVID-19	Symptomatic, no hypoxia or signs of PNA, no ongoing medical care
Moderate COVID-19	Symptomatic, signs of PNA or ongoing medical care but no hypoxia at rest (O₂ ≥ 94% on room air)
Severe COVID-19	Hypoxic at rest (O_2 < 94% on room air), RR > 30, P/F ratio < 300, >50% lung infiltrates; some subdivide between low-flow vs. high-flow O_2 /NIV
Critical COVID-19	ARDS or septic shock; requiring Mechanical ventilation or ECMO


Must pay attention to trial methods because some define these categories differently, <u>particularly severe disease</u>

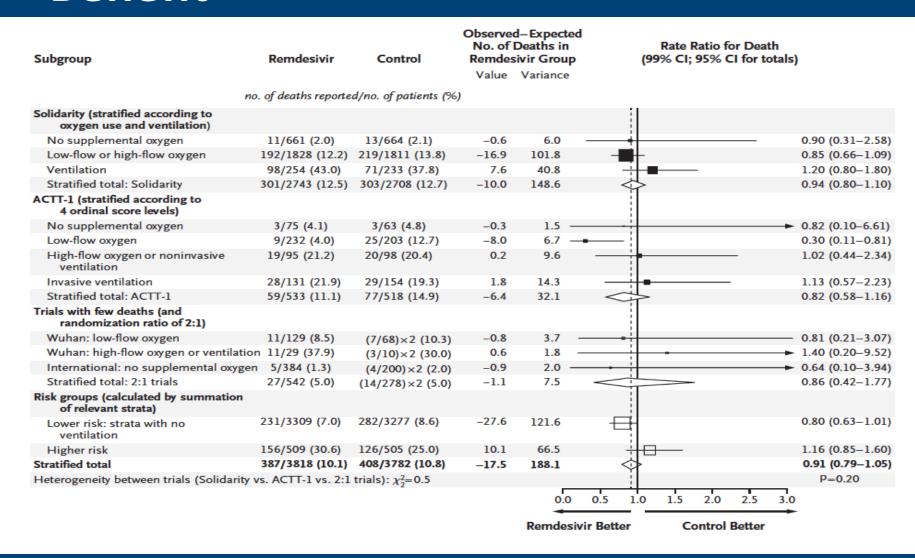
Goals of Treatment Across COVID-19 Spectrum


Antivirals

- Agents directly targeting SARS-CoV-2 replication
- Likely work best in early viral phase or as prophylaxis
- Example Agents
 - Remdesivir (RDV)
 - Hydroxychloroquine/Chloroquine
 - Lopinavir-Ritonavir
 - Ivermectin **4**
 - Favipiravir
 - Molnupiravir (MK-4482)
- Not recommended due to lack of proven benefit in RCT(s)
 - Inconclusive or lacking adequate RCT(s), only use in clinical trials


ACTT-1 Trial (RDV vs. Placebo)

- Double-blind, placebocontrolled RCT, mostly in North America
- RDV x 10 days (N=541) vs.
 Placebo (N=521)
- Primary Outcome:
 Median time to recovery
 10d vs. 15d (RR 1.29;
 p<.001)
- Limitations: Not powered for mortality, ? relevance of ordinal scale, may have started too late (9d)



SOLIDARITY: RDV Arm

- Open-label, RCT of RDV x 10 days (N=2743) vs. local std care (N=2708)
- 63% on O₂, 8% on MV
- In-hospital Mortality: 11.8%; No diff between groups
- No difference in need for MV or time to discharge
- Limitations: Open label design, Time from Sx onset and O₂ level not reported

RDV Meta-Analysis: No Mortality Benefit

Applying the Evidence: Remdesivir

- Strongest evidence of benefit in patients with severe COVID-19 but not intubated (Low flow O_2 > high flow or noninvasive ventilation)
- Less clear if any clinical benefit in moderate disease (no O_2) or critical disease (mechanical ventilation)
- Modest clinical benefit, does not appear to reduce mortality
- Practical considerations with RDV:
 - Default duration 5 d, might extend in MV/ECMO
 - Monitor LFTs daily, stop for ALT/AST > 10x upper limit of normal
 - Limited data in CKD (GFR < 30), however, growing consensus suggest can be used if benefit outweighs risk¹
 - FDA-approved for COVID-19 hospitalized adults/teens, kids (<12 or <40 kg) via EUA

Immune System Mimics

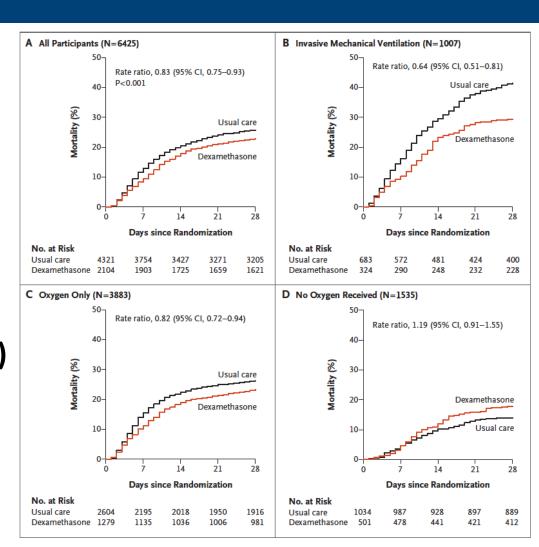
- Agents mimic the immune system's response to SARS-CoV-2
- Likely work best early prior to body's own immune response or as prophylaxis
- Example Agents
 - Monoclonal Antibodies
 - Convalescent Plasma
 - Interferons
 - Hyperimmune Immunoglobulins

Not recommended due to lack of proven benefit in RCT(s)

Inconclusive or lacking adequate RCT(s), only use in clinical trials

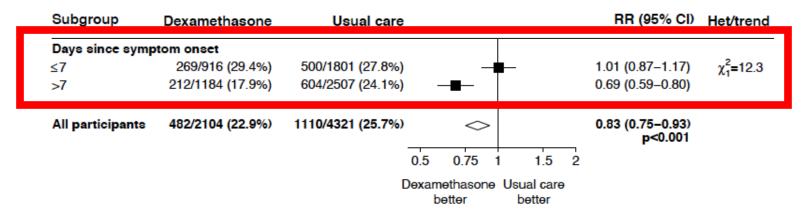
SARS-CoV-2 Monoclonal Ab

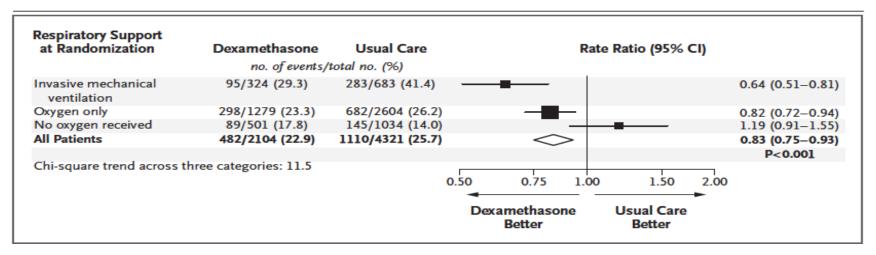
- 3 Monoclonal Ab targeting spike protein granted emergency use authorization (EUA) for mild to moderate COVID-19 in outpatients at high-risk for progression within 10 days of symptom onset
- NOT approved for patients hospitalized due to COVID-19
- Due to concerns re: in vitro susceptibility with new variants, only combination Mabs are currently recommended for use by NIH


EUA Mab	Company	Clinical Efficacy	Predicted Efficacy against variants	Comments
Bamlanivimab	Eli Lilly	75% RRR in ED visit or hospitalization (1.6% vs. 6.3%)	Significant reduction for B.1.351, P.1, B.1.429/427, B.1.529	NOT recommended by NIH (AIII)
Bamlanivimab/ etesevimab	Eli Lilly	70% RRR in hospitalization or death (2% vs. 7%)	Significant reduction for B.1351, P.1	Recommended by NIH (Alla)
Casirivimab/ imdevimab	Regeneron	71% RRR in hospitalization of death (1.3% vs. 4.6%)	Retains in vitro activity	Recommended by NIH (Alla)

Immunomodulators

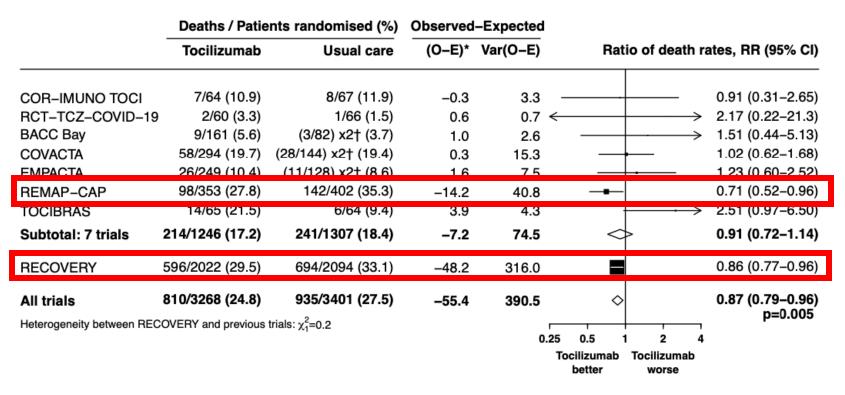
- Agents dampen the host immune and inflammatory response to SARS-CoV-2
- Likely work best during host inflammatory phase or possibly in combination with antiviral agents
- Example Agents or Therapies
 - Corticosteroids
 - Cytokine Inhibitors (e.g. IL-6)
 - JAK Pathway Inhibitors (e.g. baricitinib)
 - Colchicine
 - Fluvoxamine **2**
 - Not recommended due to lack of proven benefit in RCT(s)
 - ? Inconclusive or lacking adequate RCT(s), only use in clinical trials


Steroids: RECOVERY Trial


- Open-label, adaptive trial of COVID-19 Rx in UK
- Dexamethasone 6 mg daily up to 10d (N=2104) vs. Usual Care (N=4321)
- 28d Mortality Rate Ratios:
 - Overall: **0.83**
 - On MV: **0.64 (ARR** ≅ **12%)**
 - On O_2 : **0.82 (ARR \cong 3%)**
 - No O₂: 1.19

Steroids: RECOVERY Trial- Impact of Sx Onset Timing and Level of O₂

Figure S1: Effect of allocation to dexamethasone on 28-day mortality by other pre-specified baseline characteristics



Applying the Evidence: Corticosteroids

- Strongest data for critically ill COVID-19
 - Give to all unless clear contraindication
 - Dexamethasone (1st) or hydrocortisone (2nd); Best dose unknown so use RECOVERY dose unless in shock (?)
- Solid data for severe COVID-19 on O₂ (RECOVERY)
 - Give to most unless clear contraindication
 - If on low flow O₂ and early in disease (<7d), can possibly wait to see if progresses
- Do NOT use steroids in those who are outpatient or not on O₂

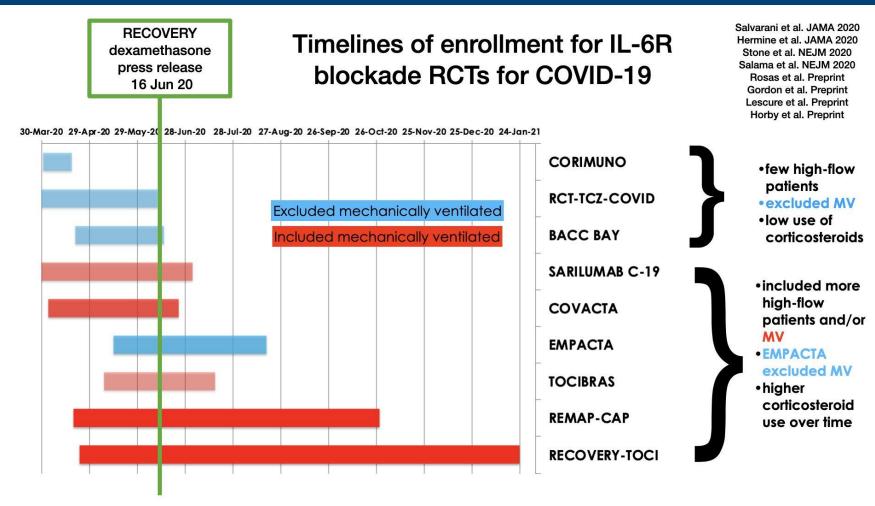
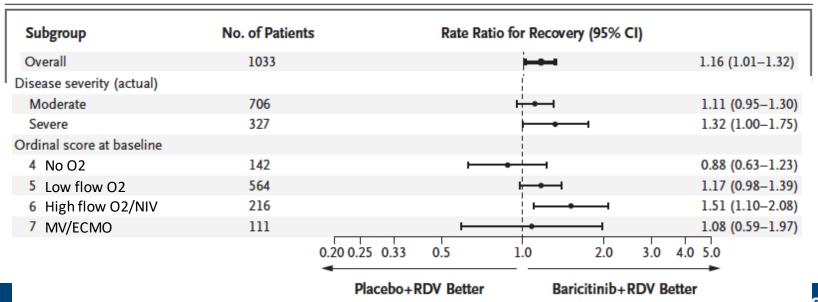
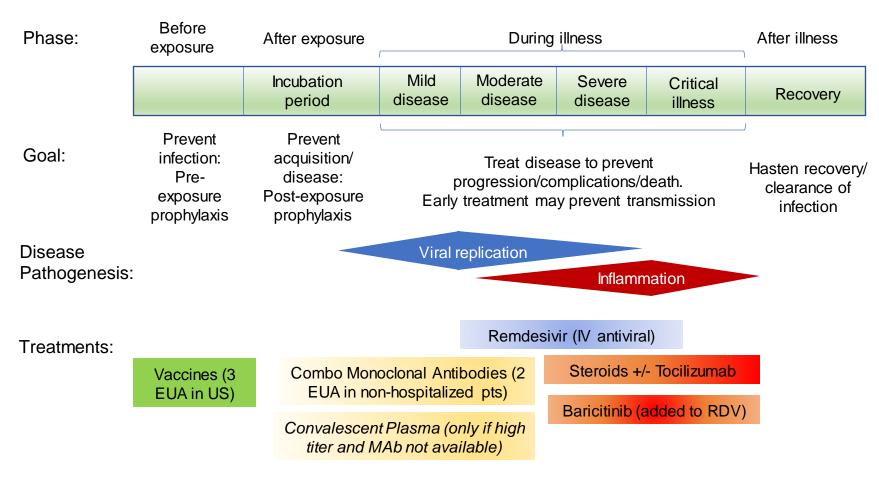

Meta-Analysis: IL-6 Inhibitors in COVID-19

Figure 4: Tocilizumab vs usual care in patients hospitalised with COVID – Meta-analysis of mortality in RECOVERY and other trials

^{*} Log-rank O-E for RECOVERY, O-E from 2x2 tables for the other trials. RR is calculated by taking In RR to be (O-E)/V with Normal variance 1/V. Subtotals or totals of (O-E) and of V yield inverse-variance-weighted averages of the In RR values.

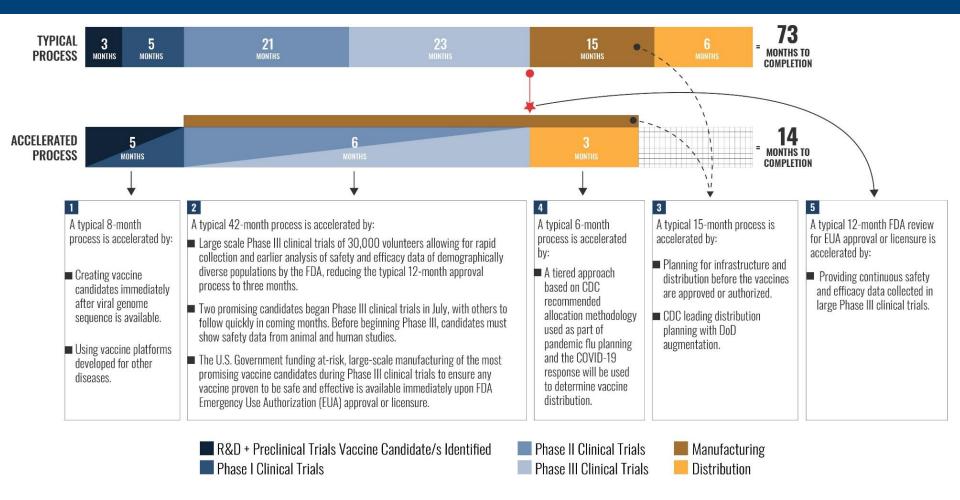

Differences and Timelines of IL-6 Trials


Consider IL-6 inhibitors in pts progressing to high-flow O₂ or MV despite being on steroids

ACTT-2: JAK Inhibitors

- Oral inhibitors of Janus Kinase (JAK) 1 and 2 (e.g. baricitinib)
- NIH ACTT-2 trial: Combination of RDV + baricitinib significant 1 day faster median time to recovery, non-significant 35% reduction in mortality compared to RDV alone; Benefit greatest in those on high flow/NIV but not intubated
- NIH ACTT-4 trial ongoing: RDV + baricitinib vs. RDV + steroids

Current Recommended COVID-19 Rx: April 2021


EUA: Emergency Use Authorization

Defeating COVID-19

Vaccines

How Did We Get Here So Fast: Operation Warp Speed

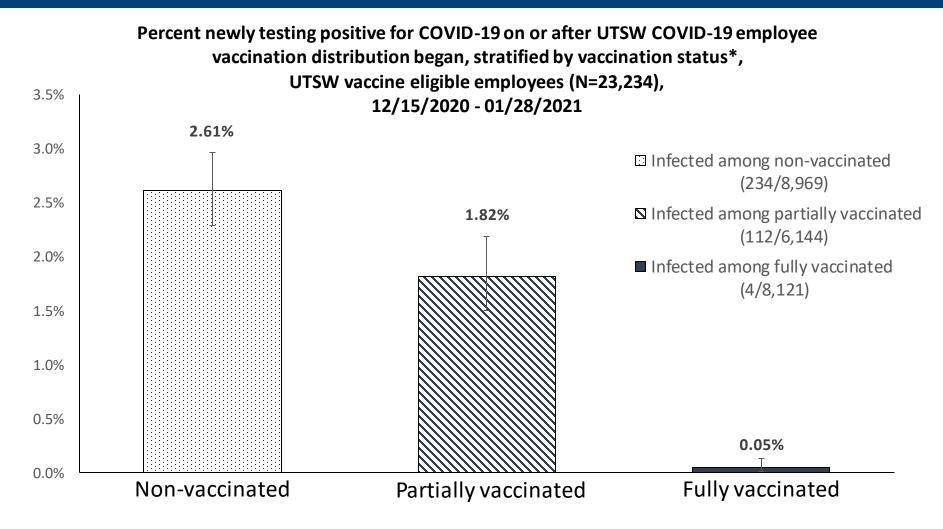
Financial and government risk increased, not product or safety risk

COVID-19 Vaccines Tested in Diverse Populations

Vaccine	Pfizer mRNA	Moderna mRNA	Johnson and Johnson viral vector
Trial participants	N= 43,448	N=30,351	N= 43,783
Female Gender (%)	49.1%	47.4%	45%
Age > 65 (%)	20.9%	24.8%	19.5%
Race: Non-white (%)	17.9%	20.8%	41%
Ethnicity: Hispanic or Latino (%)	26.1%	20.5%	46%
Medical Comorbidities (%)	46%	42%	40.8%

Similar efficacy generally seen across all subgroups based on age, gender, race, ethnicity and medical conditions.

Summary of COVID-19 Vaccine Trials


Company	Platform	Doses	Number in trial vaccinated	Protection from Hospitalized COVID-19	Protection from severe COVID-19	Protection from all sx COVID-19
Pfizer/ BioNTech	mRNA	2	~18,600	100%	100%	95% (>90% out to 6 mos)
Moderna	mRNA	2	~15,000	97% (1 after 2 nd dose)	97%	94.1% (Ab levels out to 6 mos)
J&J/ Janssen	Human adeno vector	1	~22,000	100%	85% (none hospitalized)	72% US, 66% Latin America, 57% S Africa
Oxford/ AstraZeneca	Chimp adeno vector	2	~28,588	100%	100%	76% US; 70% UK; S Africa trial halted for mild
Novavax	Protein + Adjuvant	2	~8800	100%	100%	96% UK; 55% S. Africa

Reactogenicity: Comparison to Other Vaccines

(After dose #2 for the two-dose regimens, age <60 - the highest side effect group found)

	(After dose #2 for the two-dose regimens, age <60 – the highest side effect group found)				
	SHINGRIX (ZOSTER VACCINE RECOMBINANT, ADJUVANTED)	moderna	Pfizer	Johnson-Johnson	Influenza Vaccine FLUCELVAX QUADRIVALENT
	Shingrix	COVID-19 mRNA-1273	COVID-19 BNT162b2	Ad26.COV2.S	Flu
Local Pain	88.4%	90.1%	77.8%	58.6%	45.4%
Redness	38.7%	9.0%	5.9%	9.0%	13.4%
Swelling	30.5%	12.6%	6.3%	7.0%	11.6%
Myalgia	56.9%	61.3%	37.3%	39.1%	15.4%
Fatigue	57%	67.6%	59.4%	43.8%	17.8%
Headache	50.6%	62.8%	51.7%	44.4%	18.7%
Chills	35.8%	48.3%	35.1%	$2\%^{\star}$ (unsolicited)	6.2%
Fever	27.8%	17.4%	15.8%	12.8%	0.8%
Overall Grade 3%	5.2%	4.1%	1.5%	0.54%	0.45%
Overall SE %	48%	46%	36%	27% *31% not counting chills	15%
	1	2	3	4	5

Impact of COVID-19 Vaccination on UTSW Employees

CDC Real-World Effectiveness Study: mRNA Vaccines

TABLE 2. Person-days, SARS-CoV-2 infections, and vaccine effectiveness among health care personnel, first responders, and other essential and frontline workers, by messenger RNA immunization status — eight U.S. locations, December 14, 2020-March 13, 2021

		SARS-CoV-2 infections		Unadjusted vaccine effectiveness*	Adjusted vaccine effectiveness*,†	
COVID-19 immunization status	Person- days	n- Incidence rate per 1,000 No. person-days % (95% CI)		% (95% CI)	% (95% CI)	
Unvaccinated	116,657	161	1.38	N/A	N/A	
Partially immunized	41,856	8	0.19	82 (62–91)	80 (59-90)	
≥14 days after receiving first dose only§	15,868	5	0.32			
≥14 days after first dose through receipt of second dose	25,988	3	0.12			
Fully immunized						
≥14 days after second dose	78,902	3	0.04	91 (73–97)	90 (68–97)	

Abbreviations: CI = confidence interval; N/A = not applicable.

^{*} Vaccine effectiveness was estimated using a Cox proportional hazards model accounting for time-varying immunization status.

[†] Hazard ratio is adjusted for study site.

[§] Participants received first dose but had not received second dose by the end of the study period.

Special Populations: Prior COVID-19 Infection

- CDC recommends vaccination be offered to people regardless of history of COVID-19 infection
 - Vaccine trials show safety
 - Vaccines provide added protection even in those with prior COVID
- Antibody testing not recommended prior to vaccination
- If you currently have COVID-19, it is recommended to wait until acute illness over and cleared to work; <u>if desired</u>, you can wait for almost 90 days to get the vaccine
- Wait at least 90 days for vaccine <u>if you received convalescent plasma or monoclonal Ab treatments</u>

Special Populations: Pregnancy and Immunocompromised Patients

Pregnancy and Breastfeeding:

- Women known to be pregnant were excluded from vaccine trials
- No safety concerns identified from > 30,000 pregnant women vaccinated with mRNA vaccines
- Registry of > 1,800 pregnancies, 275 completed showed miscarriage rate same as baseline community rate
- Data now shows immunity passed via placenta and breastfeeding
- OB/Gyn groups recommend that pregnant/lactating females should be offered vaccine when eligible

Immunocompromised Patients:

 Such patients may have reduced immune response to vaccine but are still recommended to receive the vaccine

COVID-19 Vaccine Efforts in Texas

Texans age 65+: 66% have received at least one dose and 50% fully vaccinated

UTSW COVID-19 Resources to Address Vaccine Hesitancy

UTSW COVID-19 MedBlogs and Vaccine Website

Recent MedBlogs:

- Life After COVID-19 Vaccines
- COVID-19 Vaccine Hesitancy: How to Overcome the Culture of Mistrust
- COVID-19 Vaccines: Separating Myths From Reality
- COVID-19 Vaccines: The Tough Questions Answered By a Frontline Doctor

UTSW "What to Know" Videos

Life After COVID-19 Vaccination

Building Confidence in COVID-19 Vaccines

Key Take-Home Messages

- COVID-19: Reminder of potential impact of emerging infectious diseases on public health and society at large
- Treatments for COVID-19 only modestly effective to date, still need clinical trials for better targeted approaches
 - Early monoclonal Ab (combo) can reduce hospitalization and death in high-risk outpatients
 - Remdesivir (+/- baricitinib) can shorten hospitalization and time to recovery, unclear if reduces mortality
 - Steroids (+/- IL-6 inhibitors) can reduce mortality in severe and critically ill COVID-19
- COVID-19 vaccines are effective and safe
 - Strongly protective against severe disease and death
 - Provide protection even against new variants
 - Currently 3 available in U.S.: Pfizer and Moderna (mRNA), J&J (viral vector)
- Non-pharmacologic interventions (NPIs) like masking and physical distancing still important in public while the vaccine rollout proceeds