When whole exome (and workup) is wholly confusing

¹ Trent Hodgson, MD

Fellow, Neuromuscular Medicine Stanford Health Care

Coauthors: ¹ Sarada Sakamuri MD, ¹ Jacinda Sampson MD, PhD Special thanks: ² Ricardo Masselli, MD

¹Stanford Health Care, ²UC Davis Health

Case

24YO right handed male with congenital onset and minimal progression of:

- Bilateral ptosis without diplopia
- Mild dysarthria without dysphagia
- Generalized weakness
- Areflexia
- Hypotonia
- Chronic fatigue
- Intermittent vertigo and lightheadedness
- Chronic headaches

Not present: dysmorphism, structural brain or eye disease, skin changes, contractures, autonomic symptoms

Birth history: full term, uncomplicated pregnancy, elective C-section

Development: delayed motor milestones, essentially normal cognitive function

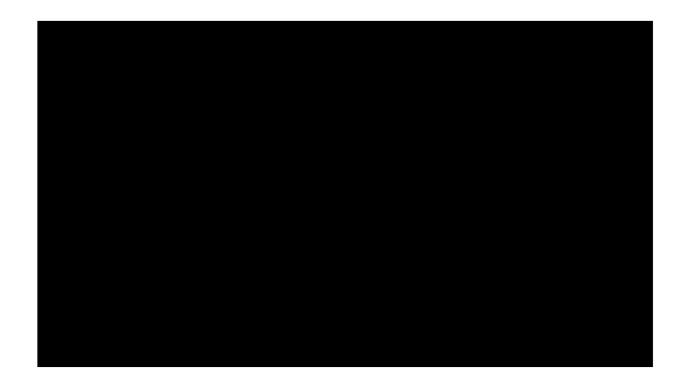
Past medical and surgical history: OSA, migraine with aura, occipital neuralgia, Zenker's diverticulum

Family history: older sister with multiple sclerosis, maternal uncle with ALS

Examination (age 24)

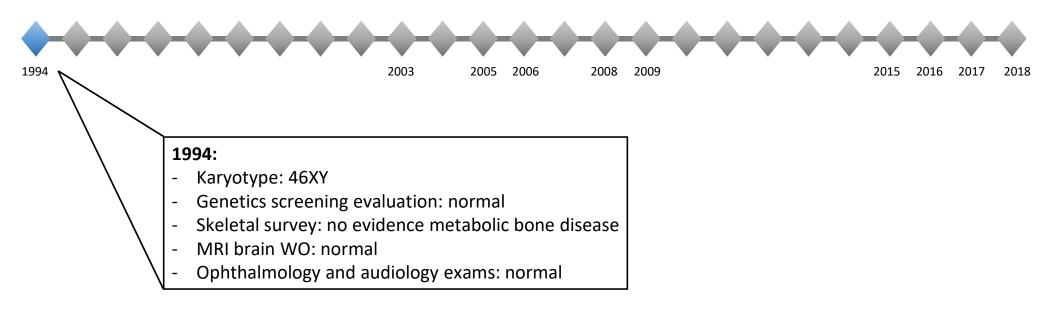
Normal:

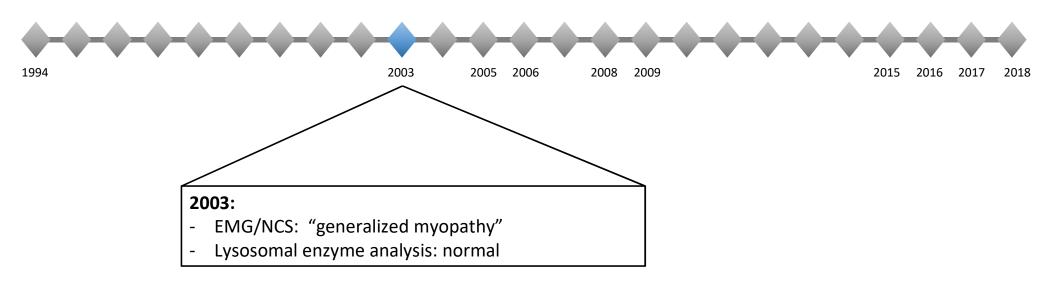
- General examination
- Mental status
- Sensation
- Coordination
- Gait

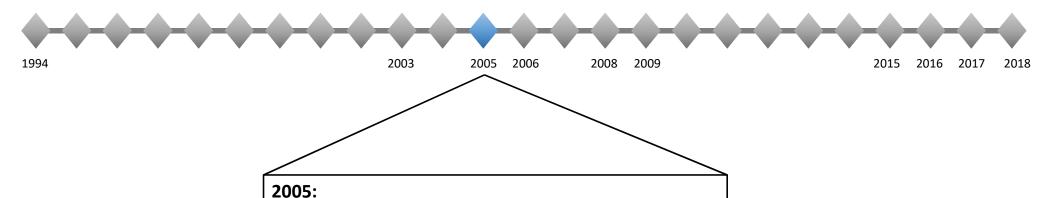

Abnormal:

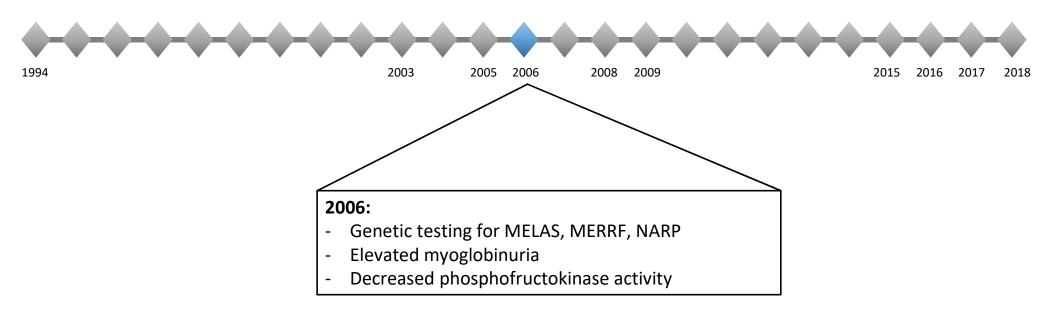
- Cranial nerves: mild dysarthria, bilateral ptosis mildly worse with sustained upgaze, facial diparesis
- Motor: see table
- Bulk: low throughout
- Tone: mildly reduced in arms and legs
- Reflexes: trace patellar only

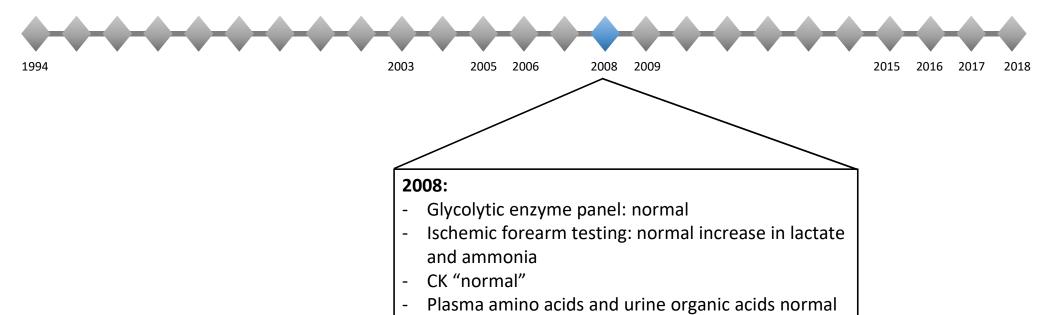
Action	Right	Left	Action	Right	Left
Shoulder abduction	4+	4+	Hip flexion	5	5
Elbow flexion	5	5	Hip extension	5	5
Elbow extension	5	5	Hip abduction	5	5
Wrist extension	5	5	Hip adduction	5	5
Wrist flexion	5	5	Knee extension	5	5
Finger extension	5	5	Knee flexion	5	5
DIP flexion at digit 2	4	4	Ankle dorsiflexion	5-	5-
DIP flexion at digit 5	4	4	Ankle plantarflexion	5	5
Digit 2 abduction	5	5	Ankle eversion	4	4
Digit 5 abduction	4	4	Ankle inversion	5	5
Thumb abduction	5	5	Great toe dorsiflexion	5	5


Our patient, age 24

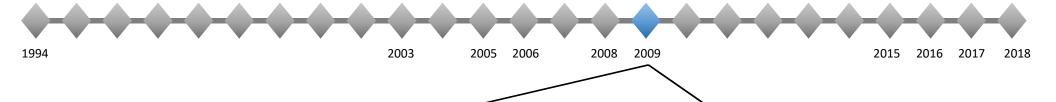








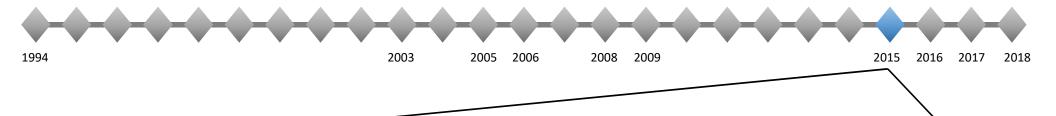
- EMG/NCS: early recruitment of short-duration motor unit action potentials in proximal and distal muscles, no evidence of polyneuropathy
- Left biceps biopsy: "scattered sub-sarcolemmal deposits of mitochondria but no ragged red fibers" otherwise normal



artifact from braces)

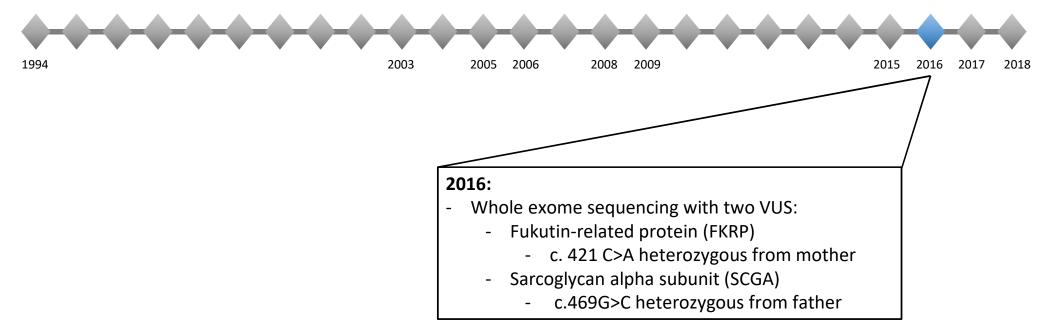
Right vastus lateralis biopsy: normal

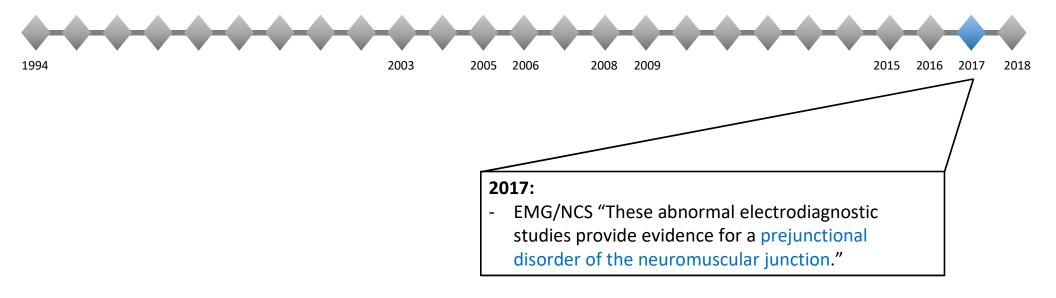
CT head WO questionable clival lesion (limited by



2009:

- MRI brain W/: No clival lesion, small foci of T2 prolongation in parietal white matter bilaterally
- MRI whole spine WO: small syrinx from T5-T10
- Sleep study: AHI 2.2, delayed REM onset, reduced REM stage duration
- ENT evaluation with tongue/pharynx hypotonia
- FEES: normal
- Vestibulonystagmogram: saccades of slow velocity and long latency with abnormal air calorics




2015:

- Left quadriceps biopsy: FINAL PATHOLOGIC DIAGNOSIS: Skeletal muscle with mitochondrial abnormalities Comment: The findings in this muscle biopsy are suggestive of a mitochondrial abnormality, but the features are not sufficiently developed to be diagnostic for a mitochondrial myopathy. The ultrastructural studies show abnormal mitochondrial paracrystalline inclusions and focal subsarcolemmal mitochondrial accumulation. No ragged red fibers are seen on H&E or trichrome stains, although some fibers show mildly increased subsarcolemmal staining for oxidative enzymes. The ATPase and fast and slow myosin stains show a predominance of type 2 muscle fibers. The oxidative enzyme stains including NADH and SDH show somewhat darker staining than expected for type 2 muscle fibers, likely reflecting a diffuse rather than focal increase in mitochondrial content that would be difficult to appreciate on ultrastructural studies.
- Gene Dx Mitochondrial DNA testing normal

Nerve / Sites	Rec. Site	Segments	Dist	Lat	Amp	Dur	Relative	CV	Latency	Temp
			mm	ms	mΫ	ms	amplitude	m/s	Difference	
L Facial										
L postauricular	Nasalis	Postauricular - Naslis	100	2.8	1.7	6.4	-	-		-
L Accessory (spi	inal)									
Neck	Trapezius	Neck - Trapezius	100	2.6	1.5	10.9	-	1		-
L Median										
Wrist	APB	Wrist - APB	80	3.2	8.4	5.1	100			33.1
Elbow	APB	Elbow - Wrist	215	7.1	8.3	5.4	98.1	55	3.9	33.1
L Ulnar										
Wrist	ADM	Wrist - ADM	80	3.1	4.5	5.3	100			32.6
Bel Elb	ADM	Bel Elb - Wrist	180	6.4	3.7	5.4	82.5	55	3.3	32.5
Abv Elb	ADM	Abv Elb - Bel Elb	100	8.5	3.6	5.6	98.4	46	2.2	32.5
L Peroneal - EDE	3									
Ankle	EDB	Ankle - EDB	80	4.5	2.1	5.2	100			32.6
Fib hd	EDB	Fib hd - Ankle	280	10.2	2.0	5.3	97.5	50	5.6	32.6
Popl Fossa	EDB	Popl Fossa - Fib hd	100	12.4	1.8	5.2	88.6	45	2.2	32.6
L Tibial - AH										
Ankle	AH	Ankle - AH	80	4.0	6.3	5.9	100			32.2
Popl Fossa	АН	Popl Fossa - Ankle	360	10.7	6.2	6.4	99.6	54	6.7	32.2

F-Wave

Nerve	Minimum latency (ms)
L Median	25.6
L Ulnar	26.3
L Peroneal	40.4
L Tibial	41.7

Sensory Nerve Conduction Studies

Nerve / Sites	Rec. Site	Segments	Onset Lat	Peak Lat	Amp	Dist	CV	Comment	Temp
			ms	ms	μV	mm	m/s		°C
L Median	L Median								
Wrist	D 2	Wrist - D 2	2.3	3.0	39.5	140	61		32.9
L Ulnar									
Wrist	D 5	Wrist - D 5	1.9	2.5	32.2	110	59		33.3
L Sural									
Calf	Ankle	Calf – Ankle	2.8	3.5	19.7	140	50		32.9
L Superficial	peroneal								
Lat leg	Ankle	Lat leg - Ankle	2.2	2.9	14.4	120	55		32.9

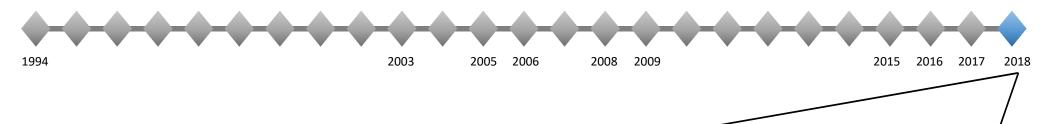
EMG

Summary Table								
Muscle	Fib/PSW	Fasc	Dur (ms)	Amp. (mV)	Poly.	Recruit	Max frequency	Comments
L. Deltoid	None	None	1-4	0.2-0.6	None	Normal	40Hz	1
L. triceps brachii	None	None	7-11	0.4-1.2	None	Normal	40Hz	1
L. biceps brachii	None	None	7-11	0.4-1.2	None	Normal	40Hz	-
L. first dorsal interosseus	None	None	7-11	0.6-1.6	None	Normal	40Hz	•
L. C6 paraspinal	None	None	7-10	0.4-1.2	None	Normal	40Hz	-
L. tibialis anterior	None	None	7-10	0.2-1.2	None	Normal	40Hz	-
L. gastrocnemius (medial head)	None	None	8-12	0.4-1.2	None	Normal	40Hz	-
L. vastus lateralis	None	None	8-12	0.6-1.6	None	Normal	40Hz	-
L. iliopsoas	None	None	7-11	0.4-1.2	None	Normal	40Hz	-
L. tensor fasciae latae	None	None	8-12	0.4-1.2	None	Normal	40Hz	•

Anatomy/train	Rate	Amplitude	Amplitude	Facillitation	Area	Area	Facillitation
	(Hz)	(mV)	4-1 (%)	Amplitude (%)	(mVms)	4-1 (%)	Area (%)
L Ulnar – 4 Stim							
Baseline @ 2Hz	2	4.0	9.2	100	11.3	9	100
Baseline @ 2Hz	2	4.1	12	105	11.7	11.3	103
Baseline @ 2Hz	2	4.0	12.7	102	11.4	10.8	100
Immed post exer	2	10.1	-1	256	34.9	4.9	308
0:30 post	2	7.6	21.3	192	25.2	17.9	222
1:00 post	2	5.7	22.5	145	18.4	19.7	163
2:00 post	2	4.4	22.8	112	14.5	22.5	128
3:00 post	2	4.4	22.6	111	12.6	21.6	111

Anatomy/train	Rate	Amplitude	Amplitude	Facillitation	Area	Area	Facillitation
	(Hz)	(mV)	4-1 (%)	Amplitude (%)	(mVms)	4-1 (%)	Area (%)
L Accessory (spi	L Accessory (spinal) – 4 stim						
Baseline @ 2Hz	2	1.2	17.7	100	8.3	23.4	100
Baseline @ 2Hz	2	1.2	17.3	97.4	7.6	16.9	91
Baseline @ 2Hz	2	1.0	5.8	84.8	6.7	-0.5	81
Immed post exer	2	2.4	2.2	206	23.0	7.4	277
0:30 post	2	3.3	38.6	281	21.1	37.8	254
1:00 post	2	2.1	34.9	175	13.1	35.5	158
2:00 post	2	1.6	32	135	9.6	30.5	115
3:00 post	2	1.4	28.5	121	8.2	29.7	99

Anatomy/train	Rate	Amplitude	Amplitude	Facillitation	Area	Area	Facillitation
	(Hz)	(mV)	4-1 (%)	Amplitude (%)	(mVms)	4-1 (%)	Area (%)
L facial – 4 Stim							
Baseline @ 2Hz	2	1.5	13	100	3.0	18.2	100
Baseline @ 2Hz	2	1.5	12.6	97.6	3.2	23.9	105
Baseline @ 2Hz	2	1.5	9.2	97.1	2.8	12.5	94
Immed post exer	2	2.0	17.6	135	3.7	21.3	124
0:30 post	2	1.6	20.2	109	3.1	23.1	102
1:00 post	2	1.5	19.6	95.9	2.8	23.6	91.8
2:00 post	2	1.3	20.1	84.6	2.6	23.3	86.7
3:00 post	2	1.1	14.4	74.9	2.3	14.6	77.9



Anatomy/train	Rate	Amplitude	Amplitude	Facillitation	Area	Area	Facillitation
	(Hz)	(mV)	4-1 (%)	Amplitude (%)	(mVms)	4-1 (%)	Area (%)
Left Ulnar (repeat) – 4 Stim							
Baseline @ 2Hz	2	3.8	24.6	100	10.7	25.1	100
Immed post exer	2	11.9	16.5	315	32.4	15.9	304
0:30 post	2	5.8	31.3	153	16.2	30	152
1:00 post	2	4.1	29.8	110	11.7	26.3	109

Additional workup? Management recommendations?

2018:

- Anti-VGCC antibodies: negative
- Myasthenia gravis antibody panel: negative
 - AChR binding, AChR modulating, Striational Ab
- GeneDX congenital myasthenic syndrome panel: negative
- Single fiber EMG: increased jitter and blocking

GeneDX congenital myasthenic syndrome panel

Gene	Protein	Inheritance pattern	Diagnostic yield*
AGRN	Agrin	AR	Rare
ALG2	Alpha 1,3 mannosyltransferase	AR	Rare
CHAT	Choline O- acetyltransferase	AR	5%
CHRNA1	AChR alpha subunit	AD/AR	<1%
CHRNB1	AChR beta subunit	AD/AR	<1%
CHRND	AChR delta subunit	AD/AR	<1%
CHRNE	AChR epsilon subunit	AD/AR	¹ 49%
COLQ	Acetylcholinesterase collagenic tail peptide	AR	13%
DOK7	Protein Dok7	AR	² 10-23%

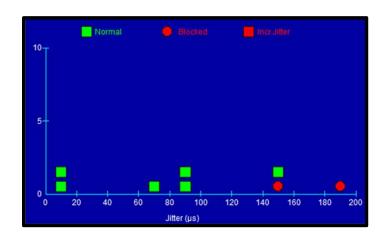
Gene	Protein	Inheritance pattern	Diagnostic yield*
DPAGT1	Dolichyl-phosphate N- acetylglucosaminephos- phorotransferase 1	AR	<1%
GFTP1	Glucosamine-fructose- 6-phosphate aminotransferase isomerizing 1	AR	4%
MUSK	Muscle skeletal receptor tyrosine protein kinase	AR	Rare
RAPSN	43 kDa receptor associated protein of the synapse	AR	³ 15-20%
SCN4A	Sodium channel protein type 4 alpha subunit	AR	Rare

^{*} In select populations with suspected CMS

¹ Founder mutation in European, Brazilian, and African populations

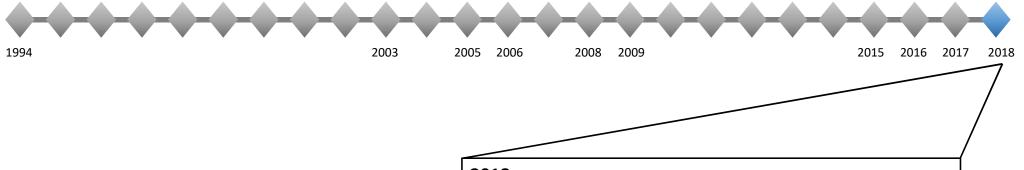
² Founder mutation in European, Canadian, and Brazilian populations


³ Founder mutation in European and Indian populations


Single fiber electromyography (2018)

L. Deltoid		
	# pairs	9
	% blocked	22%
	Mean jitter	89 μs (normal <32.9μs)

L. Sternocleidomastoid		
	# pairs	20
	% blocked	0%
	Mean jitter	47 μs (normal <29.3μs)

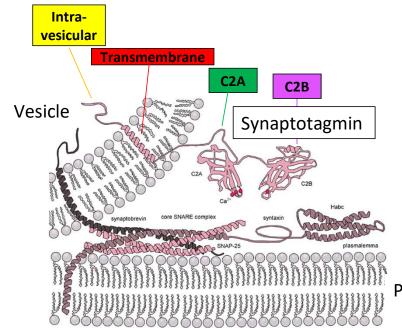


Additional workup? Management recommendations?

Further workup

2018:

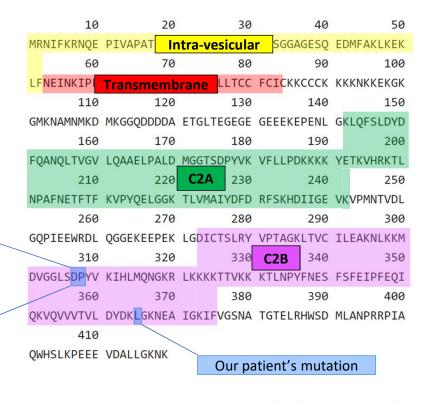
- Repeat evaluation of whole exome sequencing identifies novel mutation in synaptotagmin 2 (gene SYT2)
 - p.L365P, c.1094T>C heterozygous de novo



Synaptotagmin 2

Functions:

- Calcium detector for fast, synchronized acetylcholine release
- Reducing asynchronous, slow release


Structure:

Previously reported pathogenic mutations

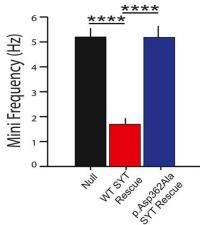
Plasmlemma

Sequence in humans:

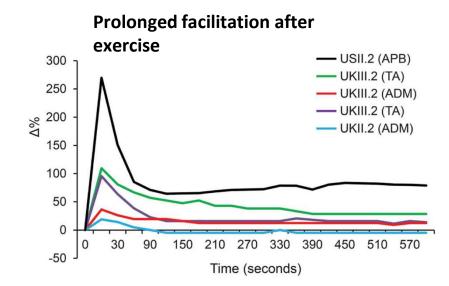
DD Georgiev et. al. Nano and Molecular Electronics Handbook. 2007

Previously reported SYT2 mutations

- · Two families (US and UK) with autosomal dominant inheritance
- Variable penetrance pattern of weakness, pes cavus, high arches common
- Repetitive nerve stimulation with baseline decrement and prolonged facilitation

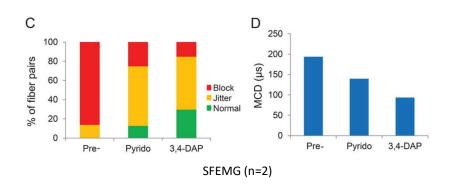

Decreased synchronous release

120


eEJC Amplitude (nA)

(H) //Juc

Increased asynchronous release


Hermann, et. al. Am. J. Hum. Gen. 2014

Whittaker, et. al. Neurology 2015

Case resolution

Whittaker, et. al. Neurology 2015

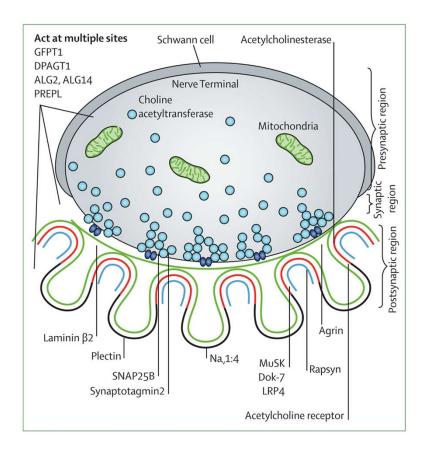
2018:

- Anconeus biopsy and in vivo studies
 - * electron microscopy and quantal analysis pending
- Treated with 3,4-DAP and improved

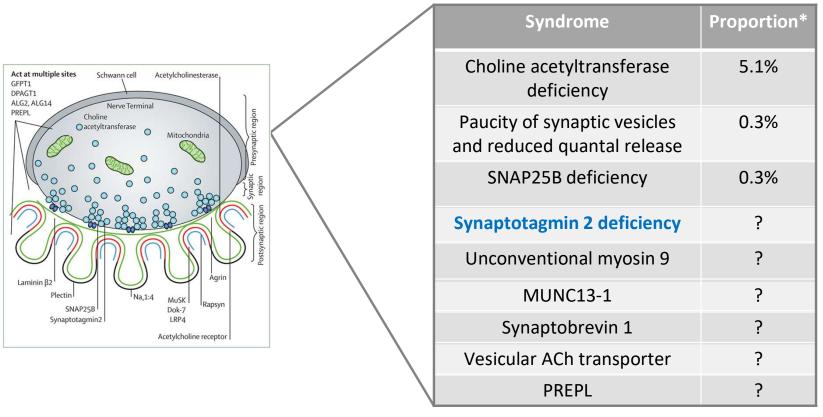
Our patient's after 3,4-DAP

Anatomy/Train	Rate (Hz)	Amplitude (mV)	Amp 4-1	Amp 6-1	Facillitation (%)	Area (mVms)	Area 4-1	Area 6-1	Facillitation area (%)
	(/	()	(%)	(%)	(75)	((%)	(%)	(/0)
Right Ulnar - ADM									
Baseline	2	8.5	9.5	8.1	100	23.5	9.4	10.5	100
Baseline	2	8.6	11.3	8.9	101	23.7	10.1	8.2	101
Immed post ex.	2	10.8	-4.3	-3.8	127	27.3	-0.3	-3.2	116
0:30 post	2	9.0	16.4	16.3	106	26.7	14.5	12.9	114
1:00 post	2	8.4	17.9	17.5	99.3	24.3	14.6	13.9	103
2:00 post	2	8.0	16.9	15.4	94.3	23.3	15.4	14.3	99
3:00 post	2	8.0	18.1	16.9	94.5	22.6	14.0	12.5	96.1
4:00 post	2	7.9	16.2	15.3	93.6	22.2	15.1	14.2	94.5

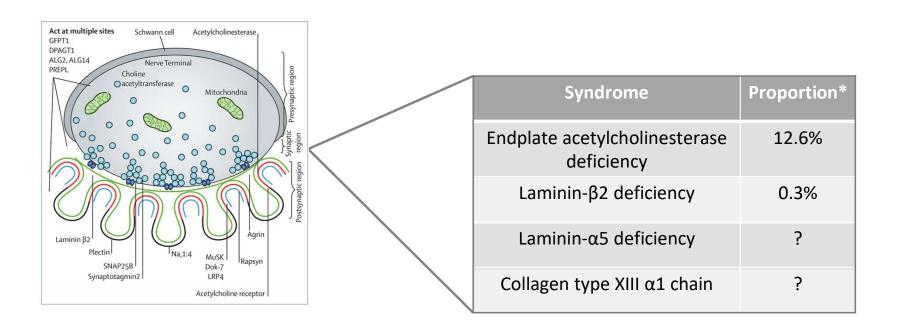
Exam 40 minutes after 20mg 3,4-DAP



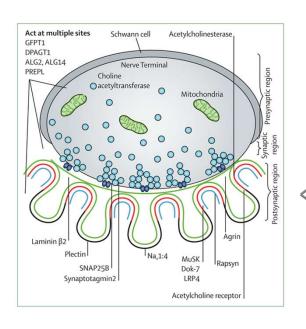
Before 3,4-DAP vs After 3,4-DAP



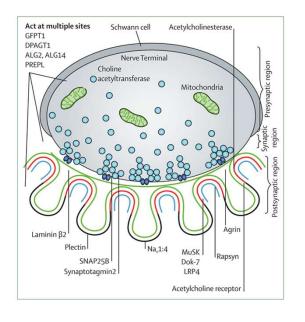
Congenital Myasthenic Syndromes

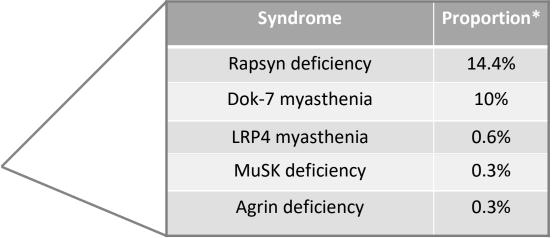


Presynaptic CMS syndromes (5.6%)

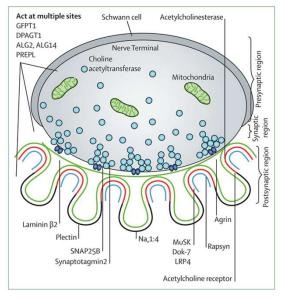


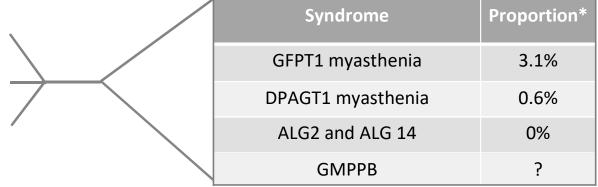
Synaptic basal lamina-associated CMS syndromes (13%)

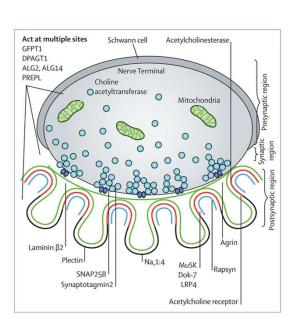

Acetylcholine receptor CMS syndromes (51%)

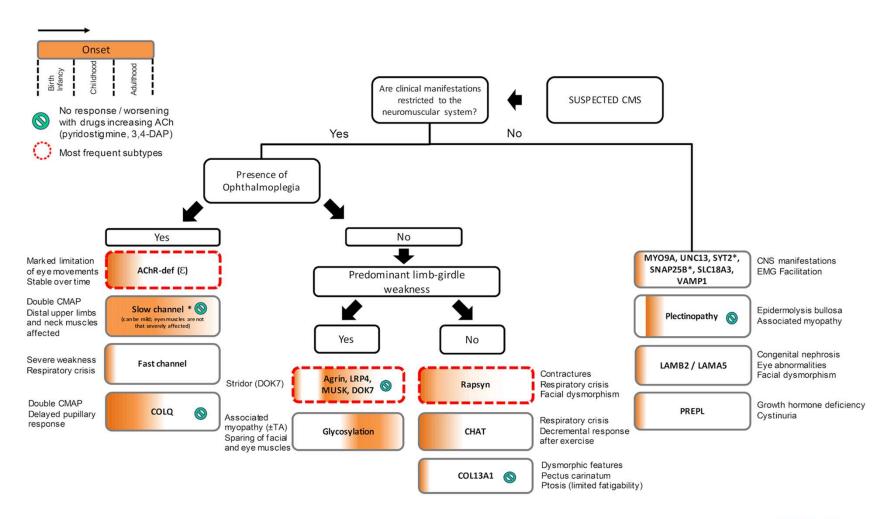


Syndrome	Proportion*		
Primary acetylcholine receptor deficiency	33.1%		
Kinetic defects in acetylcholine receptor	17.4%		
Slow-channel syndrome	6.8%		
Fast-channel syndrome	10.7%		


Defects in endplate development and maintenance (25.3%)




Congenital defect in glycosolation (3.7%)



Other myasthenic syndrome (1.4%)

Syndrome	Proportion*
PREPL deletion syndrome	0.3%
Na-channel myasthenia	0.3%
Plectin deficiency	0.6%
Myasthenia associated with centronuclear myopathies	0.3%
Myasthenia aassociated with mitochondrial citrate carrier deficiency	?

Treatment types:

- Acetylcholinesterase inhibitors
- 3,4 Diaminopyridine
- Beta-adrenergic agonists
- Channel blocking agents

Treatment types:

- Acetylcholinesterase inhibitors
- 3,4 Diaminopyridine
- Beta-adrenergic agonists
- Channel blocking agents

Acetylcholinesterase inhibitors:

Examples:

- pyridostigmine, neostigmine

Frequently useful for:

- Presynaptic syndromes, AChR deficiency, fast channel syndromes

Occasionally useful for:

- Congenital defect in glycosolation

Can worsen:

 Acetlycholinesterase deficiency, slow channel syndromes, most endplate maintenance syndromes

Contraindications:

lower dose in renal insufficiency

Treatment types:

- Acetylcholinesterase inhibitors
- 3,4 Diaminopyridine
- Beta-adrenergic agonists
- Channel blocking agents

3,4-diaminopyridine:

Examples:

- 3,4-diaminopyridine, amifampridine (Firdapse®)

Frequently useful for:

- Presynaptic syndromes

Occasionally useful for:

- Primary acetylcholine receptor deficiency

Can worsen:

 Acetlycholinesterase deficiency, slow channel syndromes, most endplate maintenance syndromes

Contraindications:

Seizures

Treatment types:

- Acetylcholinesterase inhibitors
- 3,4 Diaminopyridine
- Beta-adrenergic agonists
- Channel blocking agents

Beta-adrenergic agonists:

Examples:

- Oral albuterol, salambutol, ephedrine

Frequently useful for:

- none

Occasionally useful for:

endplate maintenance syndromes,
 Acetylcholinesterase deficiency

Can worsen:

- None

Contraindications:

Use of MAOs and SDRIs, general anesthesia

Treatment types:

- Acetylcholinesterase inhibitors
- 3,4 Diaminopyridine
- Beta-adrenergic agonists
- Channel blocking agents

Channel blocking agents:

Examples:

- Fluoxetine, quinidine

Frequently useful for:

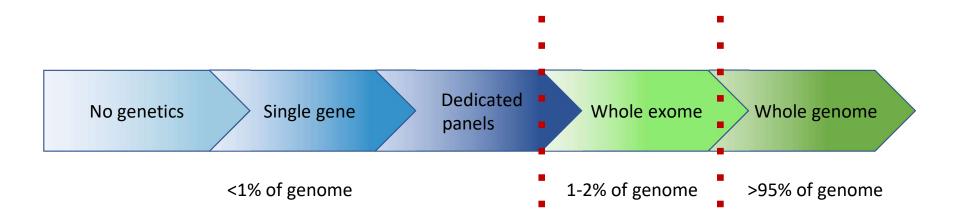
- Slow channel syndromes

Occasionally useful for:

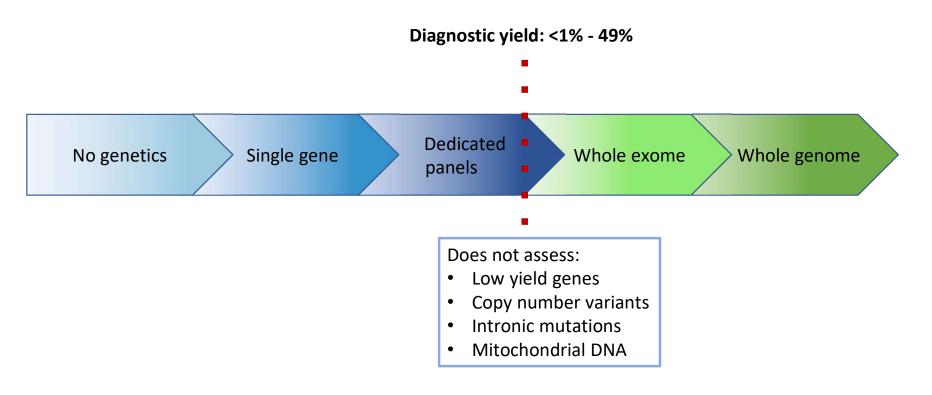
- none

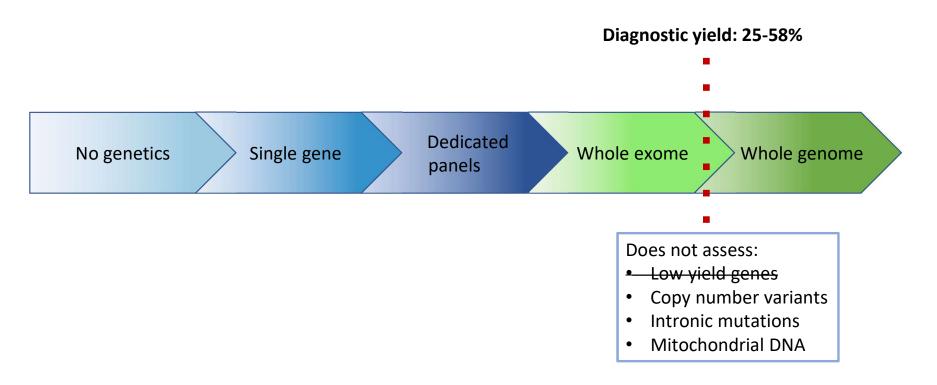
Can worsen:

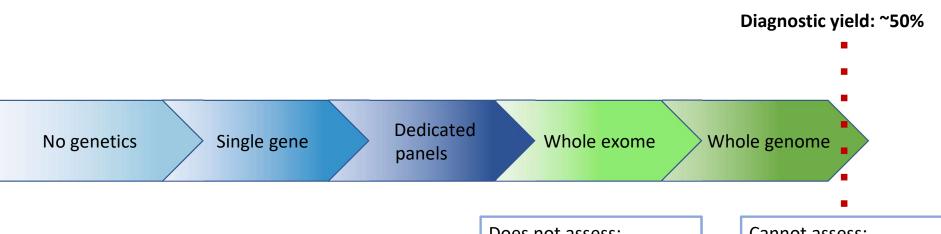
- Fast channel syndromes


Contraindications:

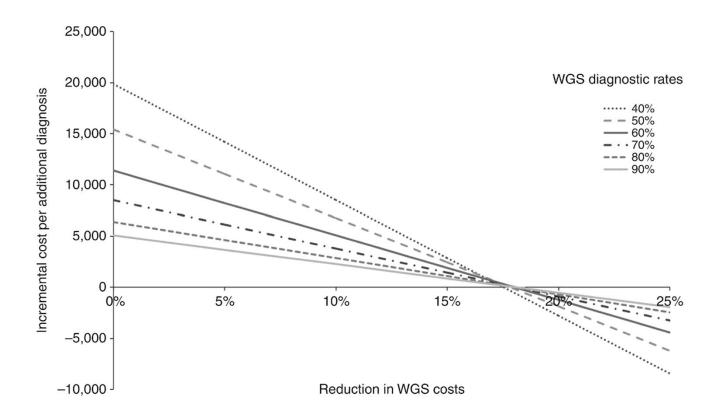
- Quinidine – cardiac arrythmia, cardiomyopathy







Does not assess:


- Low yield genes
- Copy number variants
- Intronic mutations
- Mitochondrial DNA*

Cannot assess:

- Unknown clinical relevance
- Polygenic disease*

Cost effectiveness of whole genome vs whole exome

Controversy surrounding 3,4-DAP

Jacobus Pharmaceuticals (Princeton, NJ)	Catalyst Pharmaceuticals (Coral Gables, FL) - Firdapse®
Compassionate use since 1980s	EU approval for LEMS since 2009 FDA approval 11/28/18
	Orphan Drug Act with priority review and breakthrough therapy designation
	Firdapse® will have 7 year marketing exclusivity
	Ongoing trials in MuSK+ myasthenia gravis and SMA 3

Lessons from the case

- Importance of genetic diagnosis in congenital myasthenic syndromes
 Periodic re-analysis of genetic testing may be indicated
- 2. Treatments are available but can worsen some conditions
- 2. CNS manifestations of presynaptic disorders are not well characterized

Acknowledgements

The patient, his parents, and other physicians who have participated in his care

Jacinda Sampson, MD, PhD – Clinical Associate Professor of Neurology and Neurosurgery, Stanford University Ricardo Masselli, MD – Professor of Neurology, UC Davis Health

Sarada Sakamuri, MD – Associate Director Clinical Neurophysiology/EMG Fellowship, Stanford University

John W. Day, MD PhD – Director Neuromuscular Division and Clinics, Stanford University

Selected references

- 1. Ewans LJ, Schofield D, Shrestha R, et al. Whole-exome sequencing reanalysis at 12 months boosts diagnosis and is cost-effective when applied early in mendelian disorders. *Genet Med.* 2018. doi: 10.1038/gim.2018.39 [doi].
- 2. Rodriguez Cruz PM, Palace J, Beeson D. The neuromuscular junction and wide heterogeneity of congenital myasthenic syndromes. *Int J Mol Sci.* 2018;19(6):10.3390/ijms19061677. doi: E1677 [pii].
- 3. Whittaker RG, Herrmann DN, Bansagi B, et al. Electrophysiologic features of SYT2 mutations causing a treatable neuromuscular syndrome. *Neurology*. 2015;85(22):1964-1971. doi: 10.1212/WNL.00000000002185 [doi].
- 4. Herrmann DN, Horvath R, Sowden JE, et al. Synaptotagmin 2 mutations cause an autosomal-dominant form of lambert-eaton myasthenic syndrome and nonprogressive motor neuropathy. *Am J Hum Genet*. 2014;95(3):332-339. doi: 10.1016/j.ajhg.2014.08.007 [doi].
- 5. Engel AG. Genetic basis and phenotypic features of congenital myasthenic syndromes. *Handb Clin Neurol*. 2018;148:565-589. doi: B978-0-444-64076-5.00037-5 [pii].
- 6. Engel AG. Congenital myasthenic syndromes in 2018. Curr Neurol Neurosci Rep. 2018;18(8):4. doi: 10.1007/s11910-018-0852-4 [doi].
- 7. Lyshevski SE. *Nano and molecular electronics handbook*. Boca Raton, FL: Taylor & Francis; 2007. http://www.loc.gov/catdir/enhancements/fy0704/2006101011-d.html http://marc.crcnetbase.com/isbn/9781420008142.