

Lung Ultrasound in Respiratory Distress Syndrome

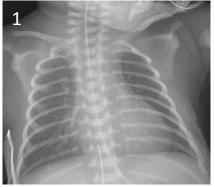
Yogen Singh, MBBS MD

Professor, University of California Davis Children's Hospital Director, Neonatal Hemodynamics, TNE and POCUS Program

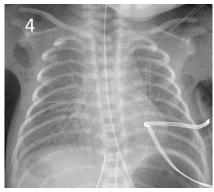
Belinda Chan, MD

Associate Professor, University of Utah
Medical Director, University of Utah Hospital NICU

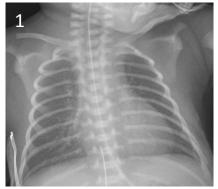
Image Diagnosis of RDS

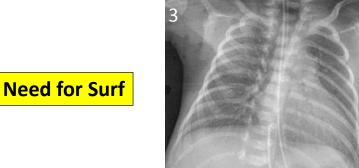

Classic CXR findings: ground glass appearance

©Singh and Chan MDs

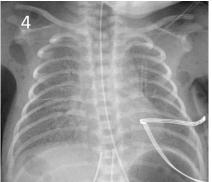

Non-specific CXR findings for RDS

What is the difference among these CXRs?

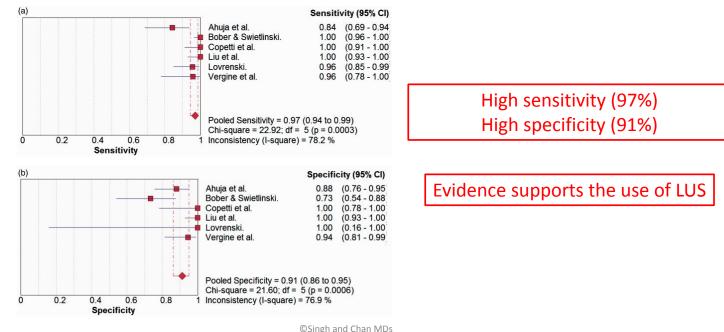




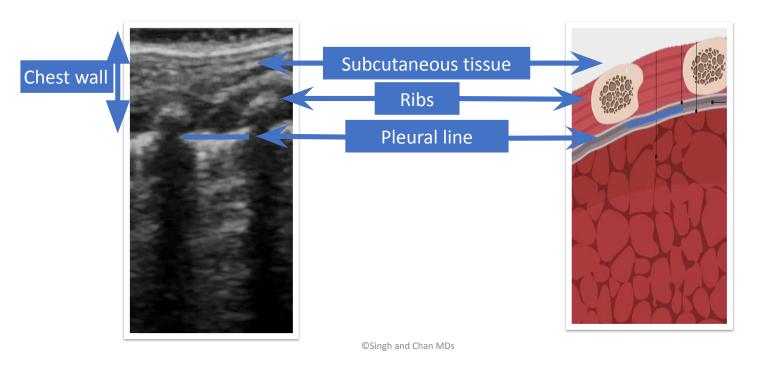
©Singh and Chan MDs


Non-specific CXR findings for RDS

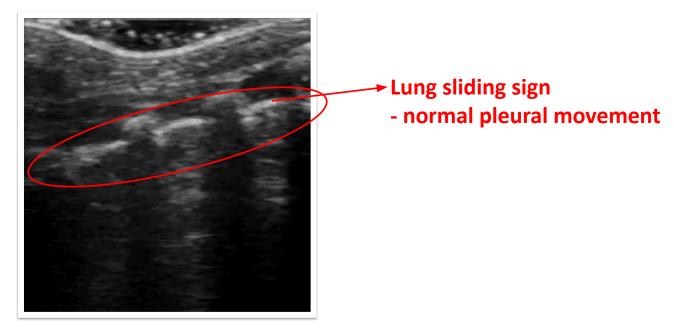
What is the difference among these CXRs?



No need for Surf

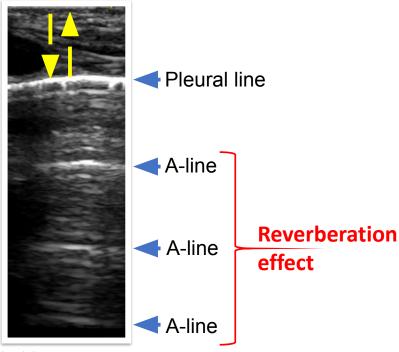

Chest X-ray (CXR) vs Lung Ultrasound (LUS)

LUS vs CXR and clinical information for diagnosing RDS



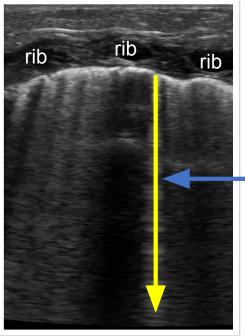
Hiles M, et al. Neonatal respiratory distress syndrome: Chest X-ray or lung ultrasound? A systematic review. Ultrasound. 2017 May;25(2):80-91.

Normal Lung Ultrasound Image

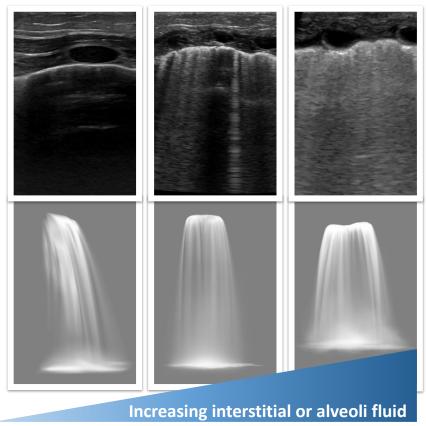


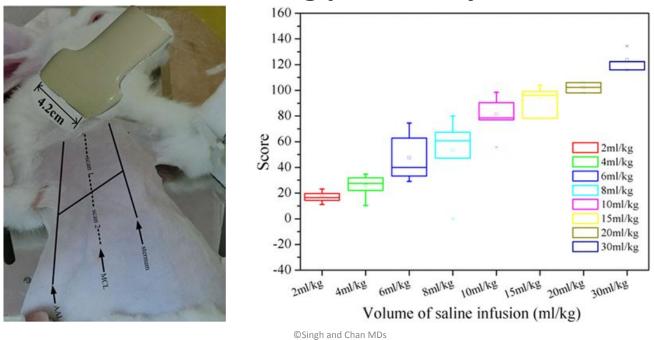
Normal Lung Ultrasound Image


©Singh and Chan MDs

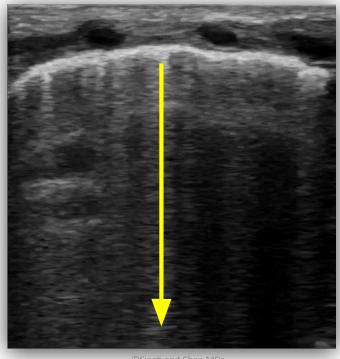

A Lines

©Singh and Chan MDs


B Lines

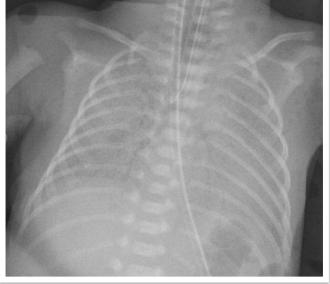

B Lines

©Singh and Chan MDs

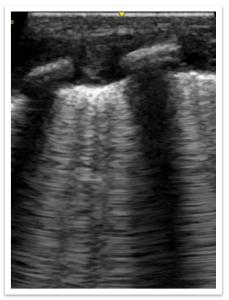

©Singh and Chan MDs

In vitro evidence: LUS in assessing pulmonary edema

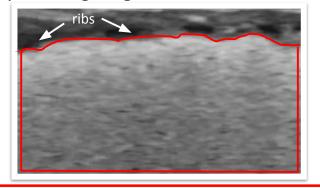
Zong HF, Guo G, Liu J, Bao LL, Yang CZ. Using lung ultrasound to quantitatively evaluate pulmonary water content. Pediatr Pulmonol. 2020;55(3):729-739. doi:10.1002/ppul.24635


B-lines are common in newborn's lungs

©Singh and Chan MD

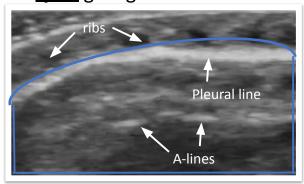

CXR vs LUS for diagnosing RDS

Classic CXR findings: ground glass appearance


©Singh and Chan MDs

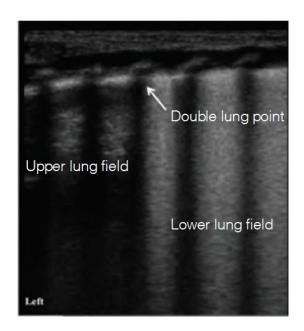
Classic US findings: confluence B lines "White out lung" in all areas of the lungs

LUS for RDS


LUS of a preterm neonate with RDS *prior to* giving surfactant.

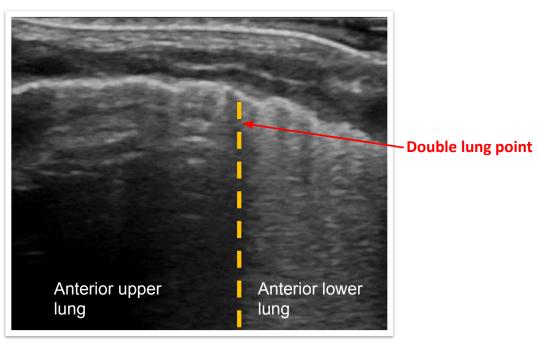
red boxed area shows confluent B lines (white lungs). Other findings of RDS:

- thickened and irregular pleural lines
- No spared area in all lung fields


LUS of a preterm neonate with RDS 6 hours <u>after</u> giving surfactant.

These LUS findings resolve after giving surfactant, indicating improved lung aeration.

Transient tachypnea of newborn (TTN)

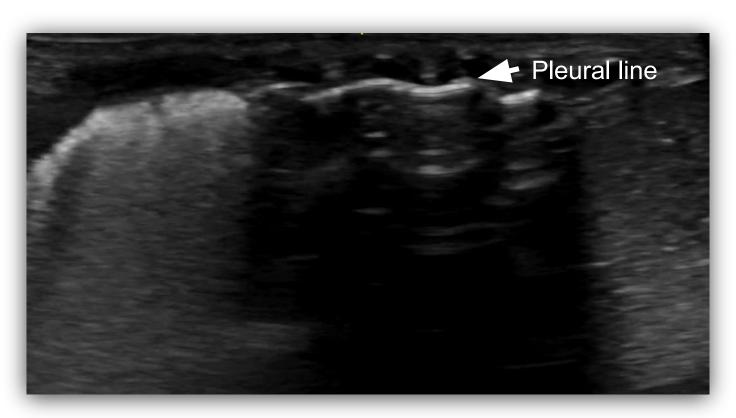

- Unlike RDS, TTN has areas of B lines sparing on LUS.
- A regular pleural line without consolidation.
- The transition point is called "Double lung point", which has a sensitivity of 46-78% and a specificity of 95-100% for TTN.

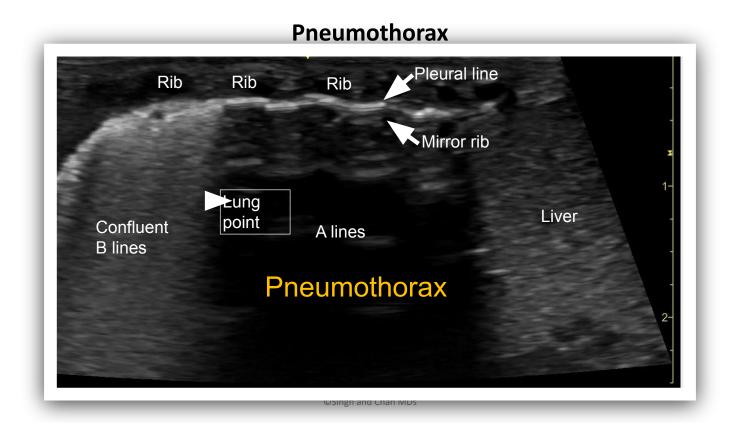
(Copetti et al 2007, Liu et al 2014, Liu et al 2016, Vergine et al 2014, Raimondi et al, 2019)

©Singh and Chan MDs

Transient Tachypnea of Newborn (TTN)

Lung Sliding



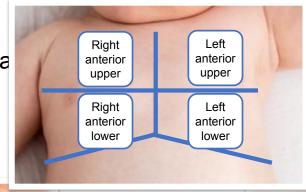

What is the clinical relevance of pleural line?

Pneumothor

Look for the pleural lung sliding Parietal pleura Visceral pleura Pleural line Pleural line Pleural line Preumothorax

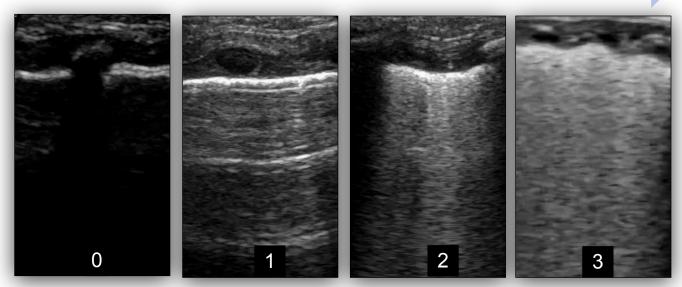
Probe selection

©Singh and Chan MDs


LUS scoring

· Scan 3 areas in each hemithora

• Upper anterior (R1, L1)

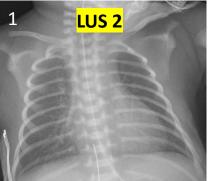

• Lower anterior (R2, L2)

• Lateral (R3, L3)

LUS scoring (0-3)
Based on the validated neonatal LUS scoring system:¹

Brat, R. et al. JAMA pediatrics 169 8 (2015): e151797

©Singh and Chan MDs

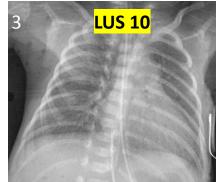

LUS scoring

- Assign LUS score to each area in all 6 areas
 - Add up all the scores (max 18)

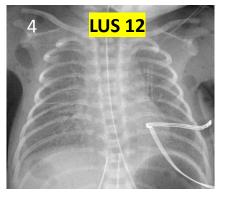
R1+R2+R3+L1+L2+L3 = total LUS score

Non-specific CXR findings for RDS

What is the difference among these CXRs?



LUS score <10

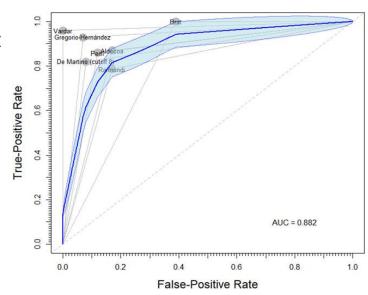

Need for Surf

LUS score \geq 10

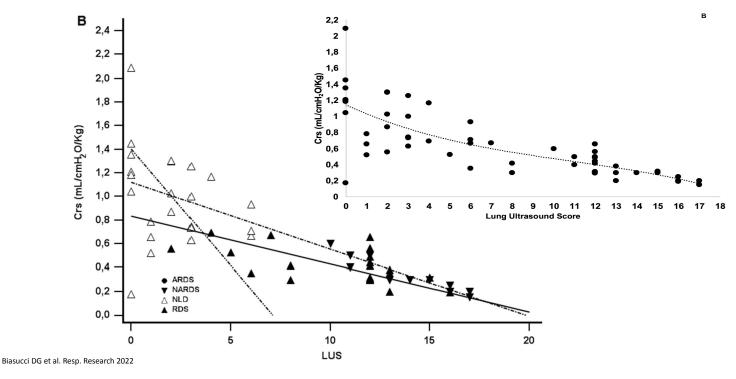
No need for Surf

LUS 7

©Singh and Chan MDs


LUS scoring predicts the need for surfactant

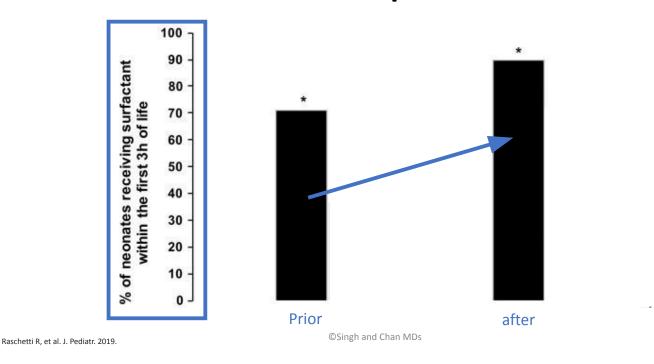
ROC curve for LUS in predicting the need for surfactant with cut-off 8 out of 18 (n=697):


AUC = 0.882 (95% CI: 0.826-0.917)

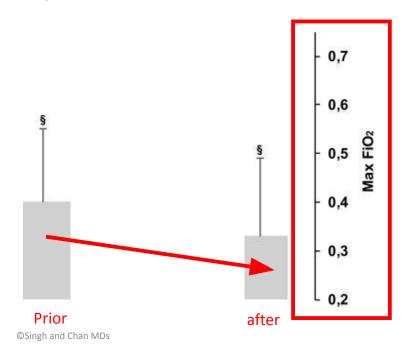
Sensitivity = 84% (p<0.0001)

Specificity = 93% (p<0.0001)

LUS score correlates with Lung Compliance



Interobserver agreement


Table 2. Interobserver Agreement Between Main and Expert, Intermediate, and Beginner Control Interpreters

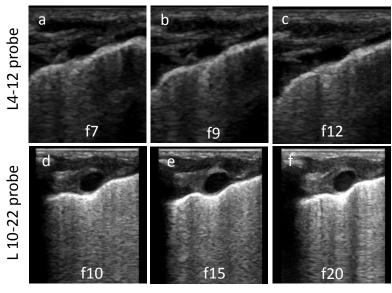
Interobserver Agreement	к1 (95% CI)	к2 (95% CI)	к3 (95% CI)	
General	0.94 (0.88-1.00)	0.72 (0.61-0.83)	0.81 (0.71-0.90)	
RDS specific	0.94(0.87-1.00)	0.90 (0.81-0.99)	0.87 (0.78-0.97)	
TTN specific	0.95 (0.89-1.00)	0.76 (0.64-0.88)	0.81 (0.70-0.91)	

Echography-guided surfactant therapy to improve timeliness of surfactant replacement.

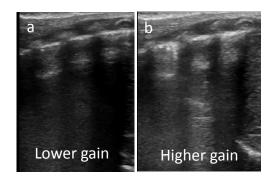
Echography-guided surfactant therapy to improve timeliness of surfactant replacement.

Practical application to your unit

Original Article


Substantiating and Adopting Lung Ultrasound Scores to Predict Surfactant Need in Preterm Neonates with Respiratory Distress Syndrome within an Institution

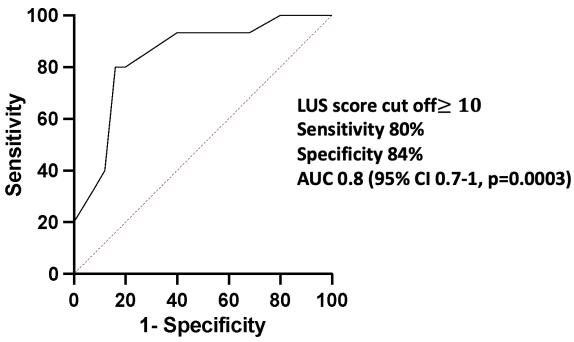
Belinda Chan, MD^{1,2} Christopher Torsitano, MD^{1,2} Sasha Gordon, BS, RDMS, RVT³
Olive Konana, MD⁴ Yogen Singh, MD⁵


Am J Perinatol. 2024 sep;41(12:1652-1659)

©Singh and Chan MDs

Ultrasound machine variation

Probe frequency variation

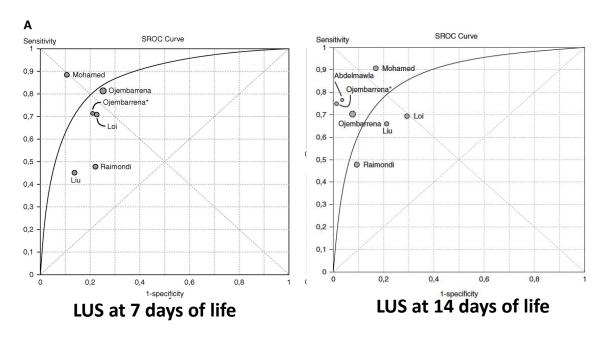

Gain setting variation

Results:

	Surf $(n=15)$	Non-Surf $(n=25)$	p-Value
Gestational age (weeks), median (IQR)	30 (27, 32)	30 (29, 32)	0.38ª
Birth weight (kg), median (IQR)	1.3 (1.1, 1.9)	1.5 (1.4, 1.8)	0.42 ^a
Male, n (%)	10 (67)	12 (48)	0.33 ^b
Prenatal steroid, n (%)	13 (87)	22 (88)	>0.99 ^b
C-section, n (%)	10 (67)	14 (58)	0.74 ^b
Apgar at 5 minutes, median (IQR)	8 (7, 9) ^c	8 (8, 9)	0.18 ^a
Age at LUS done (hours), median (IQR)	0.5 (0.25, 1.5)	1 (0.5, 2.5)	0.11 ^a
Respiratory Silverman Score, median (IQR)	6 (3, 6)	2 (1, 4)	0.006 ^a
FiO ₂ at LUS done (%), median (IQR)	40 (32, 41)	23 (21, 29)	< 0.001
SpO ₂ /FiO ₂ at LUS done, median (IQR)	241 (205, 298)	418 (327, 457)	< 0.001 a
LUS score, median (IQR)	10 (10, 13)	6 (5, 8)	<0.001ª
Maximum FiO ₂ in the first 72 hours of life, median (IQR)	55 (40, 70)	40 (30, 43)	0.003 ^a
Duration of FiO ₂ >30% (hours) in the first 72 hours of life, median (IQR)	9.8 (1.5, 21.6)	0.5 (0.25, 1.0)	< 0.001

©Belinda Chan MD

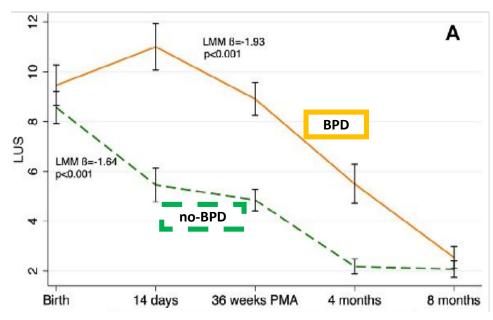
ROC curve for predicting surfactant need



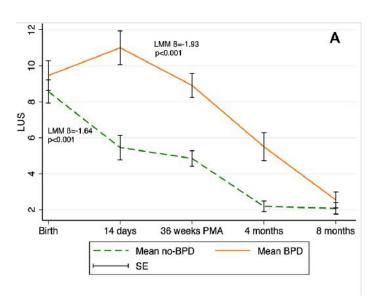
©Belinda Chan MD

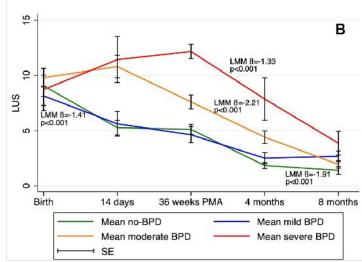
Conclusion

- LUS is a helpful adjunct in diagnosing RDS
- LUS can help in early prediction of need of surfactant therapy
- A pragmatic approach is needed for clinical implementation


Predicts Bronchopulmonary Dysplasia

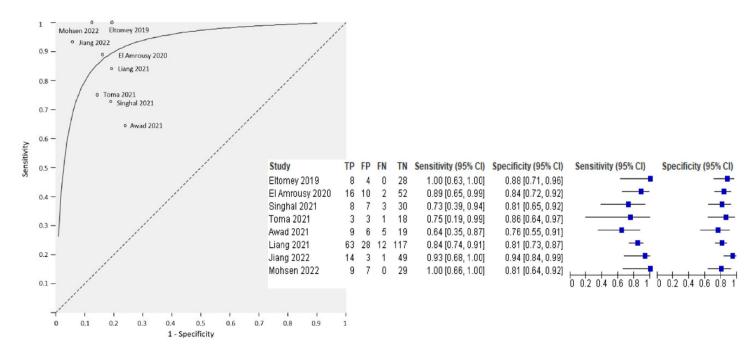
Pezza L et al, Ann Am Thor Soc 2022


©Singh and Chan MDs

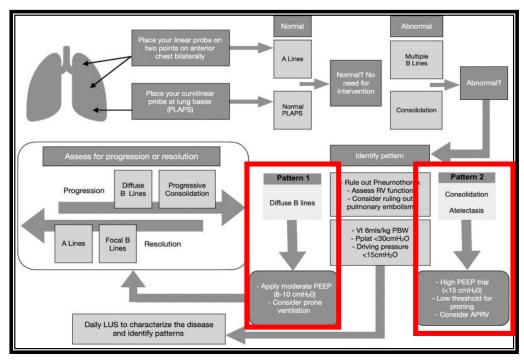

Predicts Bronchopulmonary Dysplasia

Savoia M et al, Eur J Pediatr 2022

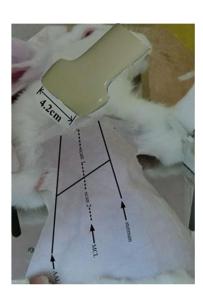
Predicts Bronchopulmonary Dysplasia



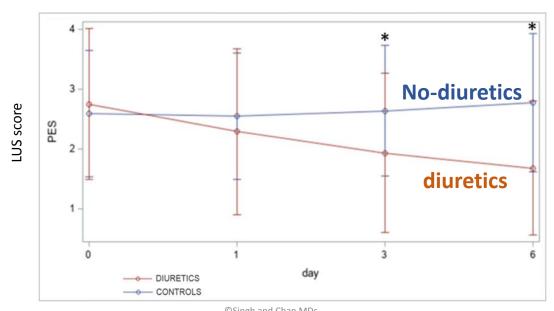
Savoia M et al, Eur J Pediatr 2022


©Singh and Chan MDs

Predicts extubation failure in neonates


©Singh and Chan MDs
Mohsen N, et al. Accuracy of lung ultrasound in predicting extubation failure in neonates: A systematic review and meta-analysis. Pediatr Pulmonol. 2023;58(10):2846-2856. doi:10.1002/ppul.26598

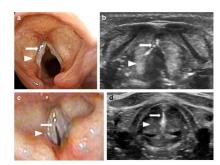

LUS in ventilator management

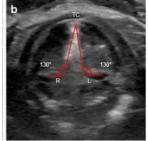

Conway H, et al. Personalizing Invasive Mechanical Ventilation Strategies in Coronavirus Disease 2019 (COVID-19)-Associated Lung Injury: The Utility of Lung Ultrasound. *J Cardiothorac Vasc Anesth.* 2020;34(10):2571-2574.

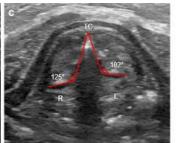
LUS in assessing pulmonary edema

Pulmonary edema in preterm neonates with chronic lung disease before and after diuretic therapy (n=51)

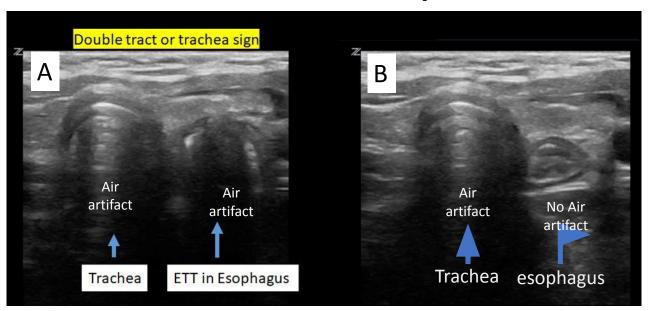
© Singh and Chan MDs
Kasniya G, et al. Lung ultrasound assessment of pulmonary edema in neonates with chronic lung disease before and after diuretic therapy. *Pediatr Pulmonol*. 2022;57(12):3145-3150.


LUS score in neonates with PDA

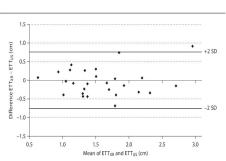

Comparison of patient characteristics between patent ductus arteriosus and ductus arteriosus closure groups.

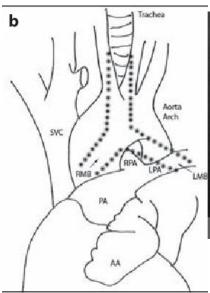

N	Age (days)	Gestational age (weeks)	Weight (kg)	AO/LA	EF (%)	Hospital stay length (days)	LUS
127	4.13±1.12	30.90±3.56	1.56±0.63	0.83±0.12	63.38±5.88	33.09±23.20	8.88±3.56
94	4.50±1.26	30.33±2.81	1.43±0.48	0.88±0.14	64.31±5.95	35.71±19.66	6.75±3.66
	0.776	13.094	15.819	0.085	0.012	4.784	0.005
	0.444	0.199	0.087	0.001	0.249	0.377	0.000
	127	N (days) 127 4.13±1.12 94 4.50±1.26 0.776	N (days) age (weeks) 127 4.13±1.12 30.90±3.56 94 4.50±1.26 30.33±2.81 0.776 13.094	N (days) age (weeks) (kg) 127 4.13±1.12 30.90±3.56 1.56±0.63 94 4.50±1.26 30.33±2.81 1.43±0.48 0.776 13.094 15.819	N (days) age (weeks) (kg) AO/LA 127 4.13±1.12 30.90±3.56 1.56±0.63 0.83±0.12 94 4.50±1.26 30.33±2.81 1.43±0.48 0.88±0.14 0.776 13.094 15.819 0.085	N (days) age (weeks) (kg) AO/LA EF (%) 127 4.13±1.12 30.90±3.56 1.56±0.63 0.83±0.12 63.38±5.88 94 4.50±1.26 30.33±2.81 1.43±0.48 0.88±0.14 64.31±5.95 0.776 13.094 15.819 0.085 0.012	N (days) age (weeks) (kg) AO/LA EF (%) length (days) 127 4.13±1.12 30.90±3.56 1.56±0.63 0.83±0.12 63.38±5.88 33.09±23.20 94 4.50±1.26 30.33±2.81 1.43±0.48 0.88±0.14 64.31±5.95 35.71±19.66 0.776 13.094 15.819 0.085 0.012 4.784

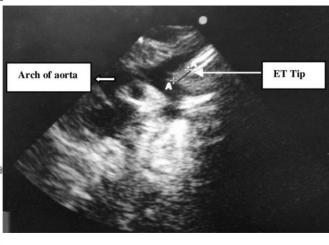

Vocal Cords



©Singh and Chan MDs


Sanchez-Jacob R, Cielma TK, Mudd PA. Ultrasound of the vocal cords in infants. Pediatr Radiol. 2022;52(9):1619-1626. doi:10.1007/s00247-021-05235-0


Endotracheal tube position



Endotracheal tube position

©Singh and Chan MDs

Singh P, Thakur A, Garg P, Aggarwal N, Kler N. Normative Data of Optimally Placed Endotracheal Tube by Point-of-care Ultrasound in Neonates. *Indian Pediatr*. 2019;56(5):374-380. Dennington, Debra et al. "Ultrasound Confirmation of Endotracheal Tube Position in Neonates." *Neonatology* 102 (2012): 185 - 189.