

Two Cases of Slowly Progressive Distal Weakness

ANGELA SUNG¹, PAOLO MORETTI², AZIZ SHAIBANI³

¹University of California San Diego

²University of Utah Health Science Center

³Nerve and Muscle Center of Texas

Nerve and Muscle *Center of Texas*

Case 1

- History of Present Illness

- 51 yo Hispanic man presents with slowly progressive weakness over 20 years
- Unable to stand on heels and toes
- Difficulty with climbing stairs and rising from a deep chair
- No weakness in the upper extremities
- No myalgias, dysarthria, dysphagia, double vision, or sensory symptoms
- No significant family history of similar symptoms or neurologic disorders

Case 1

- Physical Exam
 - Normal mental status
 - Cranial nerves intact. Speech fluent without dysarthria. No tongue atrophy or fasciculations
 - **Atrophy of the calves and intrinsic hand muscles**
 - Strength 4+/5 bilateral hip flexion, 3/5 ankle dorsiflexion and plantar flexion. Otherwise full strength in the upper and lower extremities
 - **Reflexes brisk** at the knees and absent at the ankles
 - Normal sensation to all modalities

Case 1

- Workup
 - CK 3400
 - EMG/NCS
 - Normal sensory nerve conductions in upper and lower extremities
 - Motor nerve conductions showed severely decreased amplitudes in the lower extremity and were normal in the upper extremities
 - **Decreased recruitment and high amplitude (8-9 mV) motor units** in the lower extremities.
No spontaneous activity
 - Normal thoracic paraspinal muscles
 - MRI brain normal
 - Genetic testing for *SMN1* mutations and Kennedy disease were negative

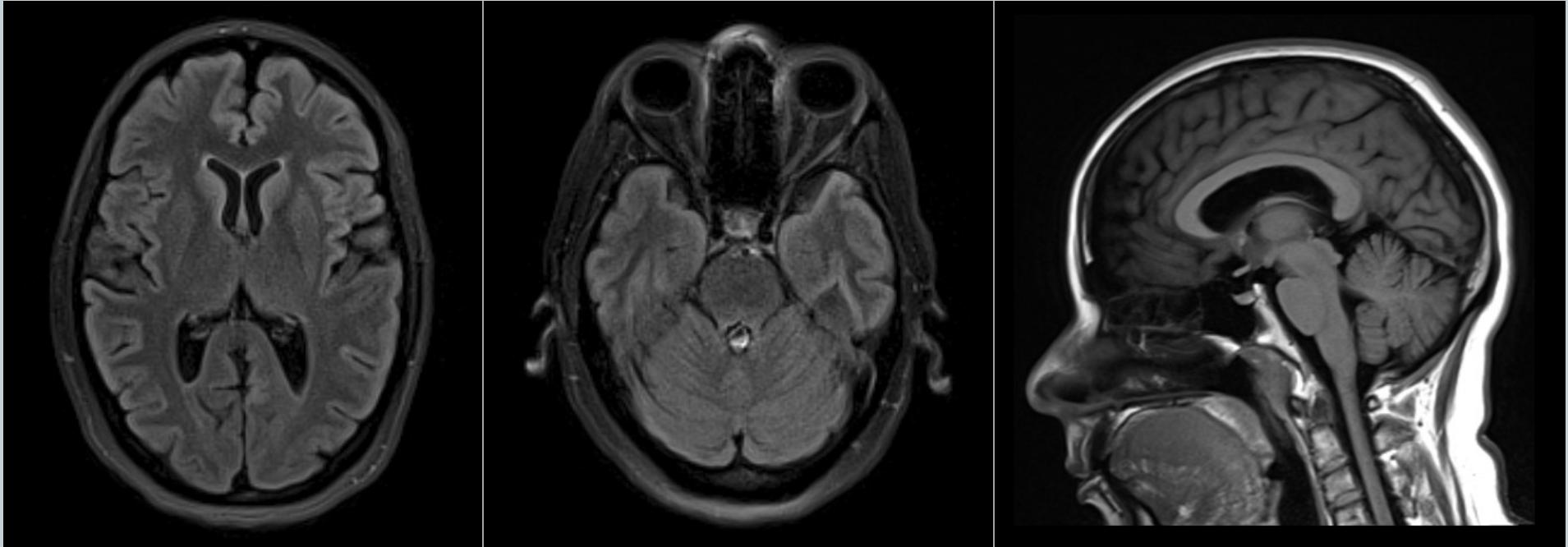
Case 2

- History of Present Illness

- 55 yo Hispanic woman presents with slowly progressive lower extremity weakness
- Symptoms began as a teenager when she had difficulty marching in band
- 2-3 years later, began walking with a limp due to bilateral foot drop
- Over years, weakness in the lower extremities progressed and also developed weakness in the hands and twitching in the thighs
- No sensory symptoms, dysphagia, dysarthria, double vision, muscle cramps
- No significant family history of similar symptoms or neurologic disorders

Case 2

- Physical Exam
 - Normal mental status
 - Cranial nerves intact. Speech fluent without dysarthria. No tongue atrophy or fasciculations
 - **Atrophy in the distal arms and legs. No** fasciculations
 - Strength 2/5 ankle dorsiflexion and plantar flexion, 3/5 hip flexion, 3/5 intrinsic hand muscles, 4/5 deltoid and triceps
 - **Reflexes were brisk** in the arms and knees, absent at the ankles
 - Normal sensation to all modalities



Case 2

- Workup
 - EMG/NCS
 - Normal sensory nerve conductions in upper and lower extremities
 - Motor nerve conductions showed severely decreased amplitudes in the lower extremities > upper extremities
 - **Decreased recruitment and high amplitude motor units** in upper and lower extremities, distal worse than proximal
 - **Fibrillation potentials and positive sharp waves** in the distal lower extremities
 - Genetic testing for *SMN1* mutations was negative

Case 2

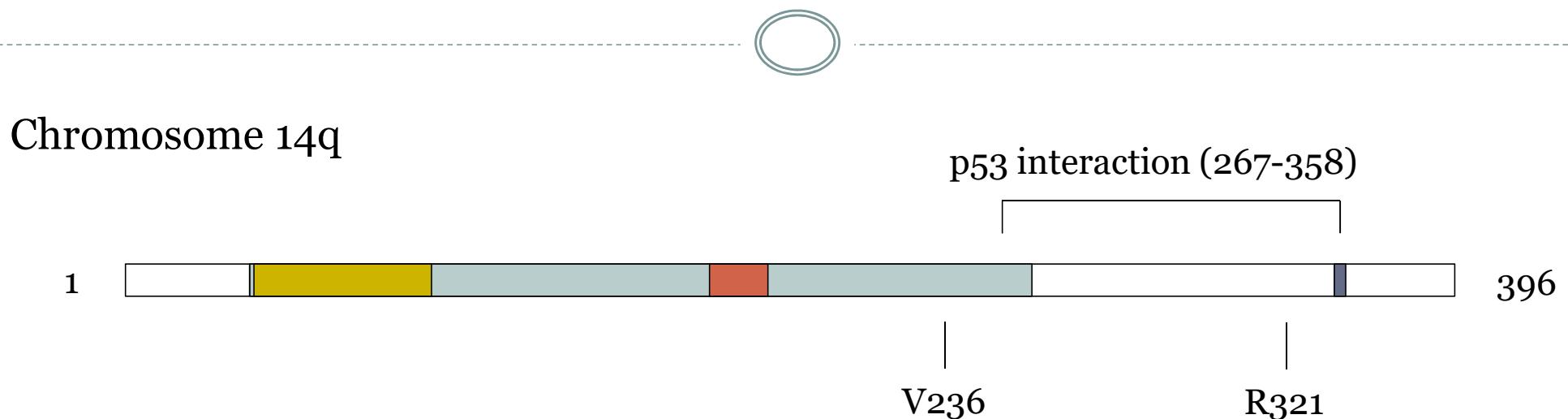
Differential Diagnosis?

ADDITIONAL WORKUP?

Whole Exome Sequencing

- Case 1: Homozygous, pathogenic variant in *VRK1* gene
 - c.C961T, p.R321C
- Case 2: Compound heterozygous pathogenic variants in *VRK1* gene
 - c.C961T, p.R321C
 - c.G706A, p.V236M

Non-5q Spinal Muscular Atrophy


- Genetically and clinically heterogeneous group
- Over 30 genes identified
- Classified according to the distribution of the weakness and the mode of inheritance
- *VRK1* is categorized as an SMA+ syndrome
 - Phenotype of anterior horn cell disease combined with pontocerebellar hypoplasia (SMA-PCH)
 - First genetically confirmed case described in 2009

VRK1 gene

- 9 confirmed cases are reported in the literature
 - Most commonly infant onset weakness
 - Some reports of hyperreflexia, ataxia, dysarthria, respiratory weakness, or cognitive impairment
 - MRI brain: microcephaly and pontocerebellar hypoplasia
- Only 1 reported adult onset case
 - Progressive, distal symmetric weakness and atrophy
 - MRI brain: Normal, no cerebellar atrophy
 - EMG/NCS: Motor neuronopathy
 - WES: Compound heterozygous variants in *VRK1* (c.A356G, p.H119R; c.C961T, p.R321C)

VRK1 gene

- Protein kinase domain (35-275)
- ATP binding site (36-87)
- Kinase active site (173-185)
- Nuclear localization signal (356-360)

Sequence Variants

(A)	Hs	D	A	H	N	G	V	A	P	S	R	R	241
	Mm	D	A	H	K	G	V	A	P	S	R	R	241
	Dr	D	A	H	K	G	V	S	P	S	R	R	242
	Dm	D	A	H	L	G	V	-	P	T	R	R	244

(B)	Hs	L	Y	E	N	L	R	D	I	L	L	Q	326
	Mm	L	Y	Q	N	L	R	D	I	L	L	Q	326
	Dr	D	Y	D	K	L	R	G	I	L	Q	Q	327
	Dm	D	Y	D	K	C	R	S	W	F	S	S	330

Sequence Variants

- c.G706A, p.V236M
 - Has been identified in 6 individuals in gnomAD, none in homozygous state
 - Allele frequency: 0.014% in Latino population, 0.002% in general population
- c.C961T, p.R321C
 - Has been identified in 49 individuals in gnomAD, none in homozygous state
 - Allele frequency: 0.089% in Latino population, 0.019% in general population

Conclusion

- *VRK1* associated spinal muscular atrophy is a diagnostic consideration in adult patients presenting with progressive distal weakness and atrophy
- Although pontocerebellar hypoplasia has been demonstrated in infant onset cases, adult onset cases have not shown evidence of cerebellar abnormalities
- The R321C variant may be associated with adult-onset disease
- Disease caused by these variants may be more common in the Latino population

References

- Renbaum P, Kellerman E, Jaron R, et al. “Spinal Muscular Atrophy with Pontocerebellar Hypoplasia Is Caused by a Mutation in the VRK1 Gene.” *Am J Hum Genet* 2009;85:281-289.
- Gonzaga-Cauregui C, Lotze T, Jamal L, et al. “Mutations in VKR1 associated with complex motor and sensory axonal neuropathy plus microcephaly.” *JAMA Neurol* 2013;70:1491-1498.
- Nguyen TP, Biliciler S, Wiszneiowski W, Sheikh K. “Expanding Phenotype of VRK1 Mutations in Motor Neuron Disease.” *J Clin Neuromuscul Dis* 2015;17:69-71.
- Young PJ, Day PM, Zhou J, Androphy EJ, Morris GE, Lorson CL. “A direct interaction between the survival motor neuron protein and p53 and its relationship to spinal muscular atrophy.” *J Biol Chem* 2002;277:2852-2859.
- Stoll M, Teoh H, Lee J, et al. “Novel motor phenotypes in patients with VRK1 mutations without pontocerebellar hypoplasia.” *Neurology* 2016;87:65-70.
- Wee CD, Kong L, Sumner CJ. “The genetics of spinal muscular atrophies.” *Curr Opin Neurol* 2010; 23:450-458.
- Valbuena A, Vega FM, Blanco S, et al. “p53 downregulates its activating vaccinia-related kinase 1, forming a new autoregulatory loop.” *Mol Cell Biol* 2006;26:4782-4793.