

March 23, 2019

Detecting Unaffected Individuals with Lynch Syndrome (DUAL)

Sayoni Lahiri, M.S., C.G.C
Certified Genetic Counselor
UT Southwestern Harold C. Simmons
Comprehensive Cancer Center
& Moncrief Cancer Institute

DISCLOSURES

Full-time employee at UT Southwestern Medical Center

No financial conflicts of interest

Scope of the Problem

- Annual Colon Cancer Treatment Costs:
 - \$14 billion nationally
 - \$3.7 billion in Texas
- Lynch syndrome:
 - Prevalence: 1 in 300
 - ~5% of colorectal cancers
 - Only ~3% identified

Risser DR et al. Tex Med 2010
[Http://www.healthypeople.gov/2020/default.aspx](http://www.healthypeople.gov/2020/default.aspx).
National Cancer Institute <https://doi.org/10.1093/jnci/djt021>

Lynch Syndrome (LS) Cancer Risks

*Other Lynch syndrome cancers: urinary tract, bile duct, small bowel, brain, pancreas, sebaceous neoplasms

**Breast and prostate cancers

Win AK, et al. Breast Cancer Res 2013

Ryan S, et al. Cancer Epidemiol Biomarkers Prev 2014

Stupart DA, et al. Colorectal Dis 2009

Barriers to Identifying LS

- Strict testing criteria (Amsterdam & Bethesda)
- Testing focused on affected individuals
- LS is often unrecognized by physicians
- Inaccurate reporting of family history by the patient

Disparities in Access to Genetic Health Services

Minority and geographically isolated groups experience significant disparities in access to cancer genetics services

RURAL GEOGRAPHIC ISOLATION
EDUCATION SOCIOECONOMIC STATUS
CULTURAL INSURANCE ACCESS

Financial burden
on family

Financial burden
on family

Poor outcomes

- Later stage of dx
- Higher mortality

Call to Action

There are currently no large-scale programs in the US that screen for LS in unaffected individuals

CDC and WHO criteria for population screening for genetic predisposition include:

- Disease is an important public health burden **1:300 individuals have LS**
- Risk for disease is known: **>80% CRC risk; Risk known for other cancers**
- Effective interventions: **CRC screening; prophylactic surgery; cascade testing**

DUAL: Detecting UnAffected Individuals with Lynch syndrome

Cancer
Prevention
Research
Institute
Texas

CANCER PREVENTION

Multiple Approaches

Navigating Barriers to Genetics Services

RURAL GEOGRAPHIC ISOLATION

Partnership with CSPAN: 23 counties
Provider education/outreach

INSURANCE SOCIOECONOMIC STATUS

Safety-net hospitals
Grant funding for uninsured/underinsured

ACCESS

Navigation
Tele counseling
Saliva kits

EDUCATION

Awareness campaigns
Educational handouts
Community outreach

Genetic Testing

- Panel testing covered by DUAL grant
- Common Hereditary Cancer Panel

APC	ATM	AXIN2	BARD1	BMPR1A	BRCA1	BRCA2
BRIP1	CDH1	CDKN2A	CHEK2	CTNNA1	DICER1	EPCAM
GREM1	HOXB13	KIT	MEN1	MLH1	MSH2	MSH3
MSH6	MUTYH	NBN	NF1	NTHL1	PALB2	PDGFRA
PMS2	POLD1	POLE	PTEN	RAD50	RAD51C	RAD51D
SDHA	SDHB	SDHC	SDHD	SMAD4	SMARCA4	STK11
TP53	TSC1	TSC2	VHL			

- Saliva samples for at-home testing

Reach within Texas

- 59 counties touched
- 12.6 million impressions via digital signage
 - 24 Hour Fitness digital signage
- 283,269 people reached
- 911 people directly educated
- 1,594 providers reached
- 1,358 providers directly educated
- ~60% of our patients are underserved

Results— 30 months

Results Breakdown

Mutation Spectrum

Challenges

- “No show” rate: 32%
- Tests not completed: 11%
- Cascade Testing: <1:1 (Goal = 1:2)

Next Steps

- Automation of EMR family history screening
- Automated messaging for colonoscopies
- Improve uptake of phone counseling, test completion, cascade testing

Acknowledgements

Theodora Ross, M.D., Ph.D-Medical Director

Sara Pirzadeh-Miller, M.S., C.G.C- Assistant Director

Genetic Counselors

Amber Gemmell, M.S., C.G.C

Annelise Pace, M.S., C.G.C

Brian Reys, M.S., C.G.C

Caitlin Mauer, M.S., C.G.C

Elise Watson, M.S., C.G.C

Jacqueline Mersch, M.S., C.G.C

John Zimmerman, M.S., C.G.C

Jordan Berg, M.S., C.G.C

Kelsey Moriarty, M.S., C.G.C

Maggie Clifford, M.S., C.G.C

Parker Read, M.S., C.G.C

Remington Fenter, M.S., C.G.C

Navigators

Angie Flores

Kathy Pratt, BSN, RN, OCN, CBCN

Luisa Hernandez

Genetic Counseling Assistants

Alexa Badalamenti

Alexa Delavega

Emily Martin

Eva Vailionis

Seth Stafki