Two Brothers With Lower Extremity Weakness

Chaitanya Konda, DO, PGY3 Yessar Hussain, MD

Conflicts of Interest

Nothing to disclose.

- 23 year old male, competitive swimmer of French descent who presented with weakness in both feet.
- Age 17 weakness in right foot with dorsiflexion
- Age 18 developed similar left foot weakness.
- Progressive stiffness in his legs leading to more frequent falls
- Muscle cramps/spasms
- Was mostly utilizing a wheelchair and walker for mobility

- Denied any sensory complaints
- Denied bulbar and ocular symptoms
- No upper extremities symptoms at the time of presentation.
- No significant past medical history
- No significant family history at time of presentation

Physical Exam

AAOx4

CN II - XII intact

Motor: 5/5 in all manual muscle testing groups in the bilateral UE and LE except for FDI and APB 4+/5 and Tibialis Anterior at 3/5

Reflexes: 3+ in biceps, triceps, brachioradialis, patellar bilaterally, diminished Achilles

reflex bilaterally

Sensory: Intact to pain and temperature and normal QVT.

Coordination: No dysmetria, FNF test intact. Mild action tremor

Gait: Spastic gait

Modified Ashworth Scale: Quadriceps 2, Hamstrings 1+

Noted Atrophy of bilateral first dorsal interossei, Abductor pollicis brevis, and bilateral feet

dorsal interossei

Bilateral severe Pes Cavus, Hammer Toes

Workup

- MRI of brain, cervical spine, and thoracic spine – normal
- B12, copper, zinc, TSH, celiac panel, ANA panel – negative

Electrodiagnostics

SNC

Nerve / Sites	Rec. Site	Onset Lat	Peak Lat ms	Amp μV	Segments	Distance mm	Velocity m/s						
L Median - Digit II (Antidromic)													
Wrist	Dig II	3.13	4.01	26.2	Wrist - Dig II	140	45						
L Ulnar - Digit V (Antidromic)													
Wrist	Dig V	2.86	3.75	33.2	Wrist - Dig V	140	49						
L Radial - Ana	L Radial - Anatomical snuff box (Forearm)												
Forearm	Wrist	1.98	2.45	19.7	Forearm - Wrist	100	51						
L Sural - Ank	L Sural - Ankle (Calf)												
Calf	Ankle	3.18	4.06	13.6	Calf - Ankle	140	44						
R Sural - Ank	R Sural - Ankle (Calf)												
Calf	Ankle	2.97	3.85	18.5	Calf - Ankle	140	47						

MNC

Nerve / Sites	Muscle	Latency	Amplitude	Duration	Rel Amp	Segments	Distance	Lat Diff	Velocity
		ms	m۷	ms	%		mm	ms	m/s
L Median - AF	В								
Wrist	APB	4.27	4.6	6.82	100	Wrist - APB	70		
Elbow	APB	8.91	3.9	6.93	85.3	Elbow - Wrist		4.64	
L Ulnar - ADN	1								
Wrist	ADM	3.54	10.2	7.03	100	Wrist - ADM	70		
B.Elbow	ADM	7.03	10.3	7.40	101	B.Elbow - Wrist	190	3.49	54
A.Elbow	ADM	9.17	10.5	7.29	102	A.Elbow - B.Elbow	100	2.14	47
						A.Elbow - Wrist		5.63	
L Peroneal - I	DB								
Ankle	EDB	5.78	5.0	5.89	100	Ankle - EDB	100		
Fib head	EDB	11.35	4.4	6.09	88	Fib head - Ankle	280	5.57	50
						Pop fossa - Ankle			
R Peroneal - I	EDB					•			
Ankle	EDB	6.82	1.5	5.89	100	Ankle - EDB	100		
						Pop fossa - Ankle			
L Tibial - AH		7							
Ankle	AH	5.94	3.8	7.97	100	Ankle - AH	100		
Pop fossa	AH	12.55	3.2	8.65	84.1	Pop fossa - Ankle	320	6.61	48
R Tibial - AH						•			
Ankle	AH	5.42	5.8	7.24	100	Ankle - AH	100		

Electrodiagnostics

EMG

EMG Summary Table												
			Spontan	neous				MUAP			Recruitm	nent
Muscle	Nerve	Roots	IA	Fib	PSW	Fasc	Other	Dur.	Amp	Polys	Pattern	Activation
R. Tibialis anterior	Deep peroneal (Fibular)	L4-L5	Normal	None	None	None	(*)	Normal	Gr Incr	None	Mod Red	Normal
R. Peroneus tertius	Deep	L5-S1	Normal	1+	1+	None		Normal	Gr	None	Mod	Normal

EMG Summary Table												
			Spontaneous					MUAP			Recruitment	
Muscle	Nerve	Roots	IÁ	Fib	PSW	Fasc	Other	Dur.	Amp	Polys	Pattern	Activation
	peroneal (Fibular)								Incr		Red	
R. Gastrocnemius (Medial head)	Tibial	S1-S2	Normal	1+	1+	None		Normal	Gr Incr	None	Mod Red	Normal
L. Tibialis anterior	Deep peroneal (Fibular)	L4-L5	Normal	None	None	None	*	Normal	Gr Incr	None	Mod Red	Normal
L. Peroneus tertius	Deep peroneal (Fibular)	L5-S1	Normal	1+	1+	None	•	Normal	Gr Incr	None	Mod Red	Normal
L. Gastrocnemius (Medial head)	Tibial	S1-S2	Normal	None	None	None		Normal	Gr Incr	None	Mod Red	Normal
L. First dorsal interosseous	Ulnar	C8-T1	Normal	1+	1+	None		Normal	Gr Incr	None	Mod Red	Normal

Electrodiagnostics

Summary:

- Bilateral peroneal motor NCSs recorded from EDB were normal from the left side and small CMAP amplitudes from the right side with normal distal latency and conduction velocity.
- Bilateral tibial motor NCSs recorded from AH were normal with no significant side to side difference.
- Bilateral sural sensory NCSs were normal, with normal sural to radial ratio with no significant side to side difference.
- Left upper extremity motor NCS for the median and ulnar nerve, recorded from the APB and ADM/FDI respectively were normal. Left upper extremity sensory NCS for the median, ulnar, and radial nerves were normal.
- Needle EMG of bilateral peroneus tertius, TA, gastrocnemius and left FDI showed large MUPs and reduced recruitment and fibs/PSWs from the gastrocnemius and peroneus tertius.
- Conclusion: This study showed evidence of distal axonal motor neuropathy, with mild asymmetry and active denervation and sensory sparing.

Genetic panel

 Genetic results were suggestive, but not particularly conclusive of the diagnosis

Differential Diagnosis?

- 2 years later, his 19 year old brother presented with similar signs and symptoms
- Age 16 stiffness in both hips and R knee
- Gait difficulties with minimal extension/flexion of right knee and minimal hip flexion
- Muscle cramp/spasms
- No foot drop
- Patient was not utilizing a wheelchair

Physical Exam

AAOx4

CN II – XII intact

Motor: 5/5 in all manual muscle testing groups in the bilateral UE and LE except for Tibialis Anterior at 4/5

Reflexes: 3+ in biceps, triceps, brachioradialis, patellar bilaterally, diminished

Achilles reflex bilaterally

Sensory: Intact to pain and temperature

Coordination: No dysmetria, FNF test intact.

Gait: Spastic gait

Modified Ashworth Scale: bilateral Iliopsoas 2, right Quadriceps 2, Foot extensors

1+

Bilateral Pes Cavus

Workup

No electrodiagnostics, MRI, or laboratory workup was performed due to our suspicion.

Patient was sent for genetic testing.

Additional information

- No significant family history was stated.
 Mother had been at every visit, and was evaluated.
- Her physical exam was mainly significant for bilateral pes cavus.
- Grandmother also had bilateral pes cavus

Additional information

- Father is presumably asymptomatic, without any issues. He has not been evaluated by us.
- Per patient's mother, researching other family members, there is nobody in the family that has these signs and symptoms

Genetic Panel Results

- Results were the same for both patients
- Two variants of Senataxin (SETX) gene
 - c.2411T>C (p.Leu804Ser), heterozygous
 - c.2755G>C (p.Val919Leu), heterozygous

Differential Diagnosis

- Distal denervation on patient's EMG with sensory sparing
- spastic lower extremities
- hyperreflexia
- a lack of bulbar or oculomotor symptoms
- noted atrophy and weakness of distal muscles
- SETX gene variant unspecified

Why not?

Senataxin Gene

- Produces protein that belongs in the class of helicases
- Involved in DNA repair and RNA production
- Mutations in the gene typically disrupt DNA repair
 - accumulated DNA damage in cells
- Neuronal degeneration through dysfunction of helicase activity or other steps in RNA processing.

Senataxin Gene

- Senataxin gene mutations have been associated with:
 - Distal hereditary motor neuropathy with upper motor neuron signs
 - Ataxia with oculomotor apraxia 2 (AOA2)
 - Spastic Paraplegia 19 (SPG19)
 - Juvenile Amytrophic Lateral Sclerosis 4 (ALS4)

Distal hereditary motor neuropathy with Upper motor neuron signs

- Epidemiology: Belgian, Austrian & English families
- Genetics: Allelic with:
 - Juvenile ALS: EMG show sensory sparing with distal denervation, bulbar involvement, slowly progressive.
 - SPG19: Similar presentation, older age group, sensory and motor neuropathy.
- Clinical: Weakness at distal hands and legs/feet.
 - Sensory: Usually normal
 - Tendon reflexes: Normal or Increased
 - Babinski sign: Positive in 50%
 - Pes cavus (50%)
- Laboratory
 - Electrophysiology
 - Nerve conduction velocity: Normal or Mildly reduced
 - CMAPs: Reduced amplitude
 - Sensory: Normal SNAP amplitude; Conduction velocity borderline or mildly slow
 - · EMG: Distal denervation
 - MRI: White matter changes

Ataxia with Oculomotor Apraxia 2

- Also called Spinocerebellar ataxia, recessive, non-Friedreich type 1
- Epidemiology: Common in French Canadians
- Genetics:
 - Mutations: premature termination in 2/3, missense in some families, often homozygous
 - Missense mutations in
 - Juvenile ALS: EMG show sensory sparing with distal denervation, bulbar involvement, slowly progressive, dominant heritance
 - Distal hereditary motor neuropathy with upper motor neuron signs
- Clinical: onset 2-22 years; mean 15 years
 - Severe ataxic gait, mild ataxia of trunk and limbs
 - Extrapyramidal: choreoathetosis, dystonic posturing with walking, masked faces when disease severe
 - **Ophthalmological:** oculomotor apraxia, disordered smooth pursuit, absent optokinetic nystagmus, saccade palsy
 - Tendon reflexes: absent in legs, plantar reflex extensor
 - Sensory: Peripheral neuropathy; sensory loss including vibratory, proprioception, and light touch
 - Motor: distal weakness and wasting in 3rd decade
 - Babinski sign: Positive in 50%
 - Pes cavus (50%)
- Laboratory
 - Electrophysiology
 - Nerve conduction velocity: Axonal loss, absent sensory potentials;
 - CMAPs: Mildly Reduced amplitude
 - Sensory: Absent or reduced amplitudes
 - EMG: Distal denervation

Spastic Paraplegia 19

- Epidemiology: Italian family
- Genetics: Similar locus with:
 - Juvenile ALS: EMG show sensory sparing with distal denervation, bulbar involvement, slowly progressive.
 - Hereditary Motor Neuropathy with upper motor neuron signs
- Onset: mean age 47 years, range from 36 to 55 years
- Clinical:
 - Spastic paraparesis: spasticity in legs, hyperreflexia in legs>arms, extensor plantar responses
 - Bladder dysfunction
 - Sensory: Reduced vibration in 40%
 - Functional deficit: mild in most; wheelchair in 10%
 - Skeletal: Scoliosis
 - No systemic disorders
- Laboratory
 - Motor Evoked potentials: Slowed central motor conduction velocity in legs

Amytrophic Lateral Sclerosis 4

- Epidemiology: England, Southern Maryland
- Genetics: Mutations: Missense, Locations: L389S; R2136H; T3I; Similar locus to Spastic Paraplegia 19; Allelic with Ataxia with Oculomotor Apraxia 2 (recessive) and Distal hereditary motor neuropathy with upper motor neuron signs
- Clinical: onset 2nd decade; Mean age range from < 6 years to 21 years
 - Early signs: spastic gait disorder
 - Weakness: distal in hands and feet; progresses to proximal; distal wasting
 - Bulbar disorders: infrequent
 - Upper motor neuron signs: hyperreflexia; upgoing toes less frequent
 - Sensory: normal; minor changes in a few older patients
 - Severity is variable
- Course
 - Slowly progressive over decades; 5th and 6th decades: Wheelchair, loss of hand function
 - Milder phenotype: Mild gait disorder
- Electrophysiology
 - Nerve conduction velocity: Reduced CMAP amplitude; Normal NCV; Normal Sensory
 - EMG: Denervation Distal > Proximal
- Pathology
 - Reduced number of anterior horn cells, especially lumbar; spinal cord atrophy
 - Sensory pathways: Posterior column fiber loss; Loss of DRG neurons
 - Axonal swelling of roots, spinal gray matter, Dentate nucleus, Cranial nerves 3&4
 - Spinal Cord atrophy

References

Chen, et al. <u>DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4).</u> Am. J. Hum. Genet. 74: 1128-1135, 2004.

Moreira, et al. <u>Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2.</u> Nature Genet. 36: 225-227, 2004.

Chance, et al. <u>Linkage of the gene for an autosomal dominant form of juvenile amyotrophic lateral sclerosis to chromosome 9q34.</u> Am. J. Hum. Genet. 62: 633-640, 1998.

Rabin, et al. Autosomal dominant juvenile amyotrophic lateral sclerosis. Brain 122: 1539-1550, 1999.

Blair, et al. <u>A gene for autosomal dominant juvenile amyotrophic lateral sclerosis (ALS4) localizes to a 500-kb interval on chromosome 9q34.</u> Neurogenetics 3: 1-6, 2000.

De Jonghe, et al. <u>Autosomal dominant juvenile amyotrophic lateral sclerosis and distal hereditary motor neuronopathy with pyramidal tract signs: synonyms for the same disorder?</u> Brain 125: 1320-1325, 2002.

Myrianthopoulos, et al. <u>Nerve conduction and other studies in families with Charcot-Marie-Tooth disease.</u> Brain 87: 589-610, 1964.

Suraweera, et al. <u>Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation.</u> Hum. Molec. Genet. 18: 3384-3396, 2009.

Questions?

