A Tremulous and Floppy Infant with Cardiomyopathy

Michael A. Lopez, MD, PhD, Pediatric Neuromuscular Fellow
Caro Tesi-Rocha, MD, Sarada Sakamuri, MD, Seth Lummus, DO, Hannes Vogel, MD, John W. Day, MD, PhD

Division of Neuromuscular Medicine & Division of Neuropathology
Stanford University
Chief Complaint

- A former 39-week large for gestational age male infant with known cardiomyopathy presented at 3 months of age
 - Respiratory distress
 - Hypoglycemia
 - Cardiogenic shock requiring extracorporeal membranous oxygen exchange
- How did we get here?
Birth Hospital Course

- At birth
 - Poor feeding + respiratory distress
 - Tremors and ankle clonus
 - Reflexes brisk
 - 3+ at knees with spread
 - 4+ at ankles with sustained 10 beat clonus
 - Hypotonia
 - Slip through
 - Marked head lag
Birth Hospital Course

- Labs normal (CK 111 U/L, ammonia 53 umol/L, lactate 1.2)
- Echocardiogram: hypertrophic obstructive cardiomyopathy
 - Enlarged right ventricle and septum
 - Normal systolic function (LVEF 75% → 58%)
 - Evidence of diastolic dysfunction
- Normal newborn screen, chromosomal microarray, MRI brain, and cEEG
- Cardiomyopathy and glycogen storage panels ordered
Birth Hospital Course

- Feeding improved
- Respiratory distress improved
- Interval echocardiogram “without changes”
- Discharged home after 3 weeks with close follow up
Differential considerations that include tremor, hypotonia, and cardiomyopathy?

Localization?
Presentation at 3 months-old with cardiogenic shock

- Initially, he did well at home
 - Tracking
 - Smiling
 - Cooing
- 2 weeks prior to presentation (several PCP visits)
 - Progressive feeding difficulties
 - Respiratory distress
 - Lethargy
- Brought to hospital
 - Cardiogenic shock
 - Required ECMO
 - Parainfluenza +
Additional History & Exam

- Genetic results, 2 variants
 - Pathogenic variant
 - Variant of uncertain significance
- Neuromuscular team consulted
 - Normal facial expression without myopathic facies
 - No dysmorphic features in his face
 - Normal muscle bulk
 - Appendicular hypotonia
- Recommendations
 - Muscle biopsy
Vastus Lateralis Biopsy – H&E

Numerous small round fibers
Vastus Lateralis Biopsy – ATPase pH 9.4

Selective type 1 fiber hypertrophy
Vastus Lateralis Biopsy – ATPase pH 4.3

Selective type 1 fiber hypotrophy
Do we have a molecular diagnosis?

Is myopathy progressive?

What role does myopathy play in any considerations for transplant?
Diagnosis

- Compound heterozygous variants in found in **MYL2 gene** with
 - Paternal pathogenic variant: **c.184A>T, p.Lys62***
 - Maternal variant of unknown significance: **c.122A>T, p.Asp41Val**
- **MYL2** encodes myosin regulatory light chain

Table 2 Global scheme of main myosins and major muscle fibre types in adult human skeletal muscle and heart

<table>
<thead>
<tr>
<th>Myosin</th>
<th>Adult heart</th>
<th>Myosin gene</th>
<th>Adult skeletal muscle</th>
<th>Myosin gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myosin heavy chain</td>
<td></td>
<td>MYH6</td>
<td>Type 2A: myosin IIa, fast</td>
<td>MYH2</td>
</tr>
<tr>
<td></td>
<td>Type-α, atrial isoform</td>
<td></td>
<td>Type 2B: myosin IIx/d, fast</td>
<td>MYH1</td>
</tr>
<tr>
<td></td>
<td>Type-β, ventricular isoform</td>
<td>MYH7</td>
<td>Type 1, slow</td>
<td>MYH7</td>
</tr>
<tr>
<td>Myosin essential/alkali light chain</td>
<td>Atrial isoform</td>
<td>MYL1 (MYL4)</td>
<td>Fast</td>
<td>MYL1</td>
</tr>
<tr>
<td></td>
<td>Ventricular isoform</td>
<td>MYL3</td>
<td>Slow</td>
<td>MYL3 (MYL6B)</td>
</tr>
<tr>
<td>Myosin regulatory light chain</td>
<td>Atrial isoform</td>
<td>MYL7</td>
<td>Fast</td>
<td>MYLPF</td>
</tr>
<tr>
<td></td>
<td>Ventricular</td>
<td>MYL2</td>
<td>Slow</td>
<td>MYL2</td>
</tr>
</tbody>
</table>

MYL2-associated myosinopathy

- Dominant mutations linked with cardiomyopathy
- Recessive mutations linked with heart + skeletal myopathies:
 - Italian families with compound heterozygous mutations
 - Dutch families with homozygous mutations
- All patients
 - Died by 4 to 6 months
 - Clonus / tremor
 - Generalized high amplitude tremor + clonus
 - Present at birth prior to cardiomyopathy symptoms
- Hallmarks were
 - Rapidly progressive myopathy
 - Myofibrillar disarray
 - Cardiomyopathy

Concluding Thoughts

- **Myosinopathies** should be considered in patients with tremor, hypotonia, and cardiomyopathy.
- Genetic testing in this patient revealed pathogenic variants in *MYL2* gene associated with **congenital myopathy** and **cardiomyopathy**.
- *MYL2* mutations can be **rapidly fatal** in first 3 to 4 months of life due to cardiomyopathy.
- **Heart transplantation** went well for this patient and he continues to make developmental progress without striking weakness.
- Prognosis unclear, but seems to have **milder congenital myopathy**.
Thank You!

References:

Additional thanks to:
- Neuromuscular Faculty
- Adult and Pediatric MDA teams