A Tremulous and Floppy Infant with Cardiomyopathy

MICHAEL A. LOPEZ, MD, PHD,

PEDIATRIC NEUROMUSCULAR FELLOW

CARO TESI-ROCHA, MD, SARADA SAKAMURI, MD, SETH LUMMUS, DO, HANNES VOGEL, MD, JOHN W. DAY, MD, PHD

Division of Neuromuscular Medicine & Division of Neuropathology Stanford University

Chief Complaint

- A former 39-week large for gestational age male infant with known cardiomyopathy presented at 3 months of age
 - > Respiratory distress
 - > Hypoglycemia
 - Cardiogenic shock requiring extracorporeal membranous oxygen exchange
- How did we get here?

Birth Hospital Course

- At birth
 - > Poor feeding + respiratory distress
 - > Tremors and ankle clonus
 - Reflexes brisk
 - -3+ at knees with spread
 - -4+ at ankles with sustained 10 beat clonus
 - > Hypotonia
 - Slip through
 - Marked head lag

Birth Hospital Course

- Labs normal (CK 111 U/L, ammonia 53 umol/L, lactate 1.2)
- Echocardiogram: hypertrophic obstructive cardiomyopathy
 - Enlarged right ventricle and septum
 - Normal systolic function (LVEF 75% → 58%)
 - > Evidence of diastolic dysfunction
- Normal newborn screen, chromosomal microarray, MRI brain, and cEEG
- Cardiomyopathy and glycogen storage panels ordered

Birth Hospital Course

- Feeding improved
- Respiratory distress improved
- Interval echocardiogram "without changes"
- Discharged home after 3 weeks with close follow up

Differential considerations that include tremor, hypotonia, and cardiomyopathy?

Localization?

Presentation at 3 months-old with cardiogenic shock

- Initially, he did well at home
 - Tracking
 - Smiling
 - Cooing
- 2 weeks prior to presentation (several PCP visits)
 - > Progressive feeding difficulties
 - > Respiratory distress
 - Lethargy
- Brought to hospital
 - Cardiogenic shock
 - Required ECMO
 - > Parainfluenza +

Additional History & Exam

- Genetic results, 2 variants
 - Pathogenic variant
 - Variant of uncertain significance
- Neuromuscular team consulted
 - Normal facial expression without myopathic facies
 - No dysmorphic features in his face
 - Normal muscle bulk
 - Appendicular hypotonia
- Recommendations
 - Muscle biopsy

Vastus Lateralis Biopsy – H&E

Numerous small round fibers

Vastus Lateralis Biopsy – ATPase pH 9.4

Selective type 1 fiber hypotrophy

Vastus Lateralis Biopsy – ATPase pH 4.3

Selective type 1 fiber hypotrophy

Do we have a molecular diagnosis?

Is myopathy progressive?

What role does myopathy play in any considerations for transplant?

Diagnosis

- Compound heterozygous variants in found in MYL2 gene with
 - Paternal pathogenic variant: c.184A>T, p.Lys62*
 - Maternal variant of unknown significance: c.122A>T, p.Asp41Val
- MYL2 encodes myosin regulatory light chain

Table 2 Global scheme of main myosins and major muscle fibre types in adult human skeletal muscle and heart

Myosin	Adult heart	Myosin gene	Adult skeletal muscle	Myosin gene
Myosin heavy chain	Type- α , atrial isoform	МҮН6	Type 2A: myosin IIa, fast Type 2B: myosin IIx/d, fast	MYH2 MYH1
	Type-β, ventricular isoform	MYH7	Type 1, slow	MYH7
Myosin essential/alkali light chain	Atrial isoform Ventricular isoform	MYL1 (MYL4) MYL3	Fast Slow	MYL1 MYL3 (MYL6B)
Myosin regulatory light chain	Atrial isoform Ventricular	MYL7 MYL2	Fast Slow	MYLPF MYL2

MYL2-associated myosinopathy

- Dominant mutations linked with cardiomyopathy
- Recessive mutations linked with heart + skeletal myopathies:
 - Italian families with compound heterozygous mutations
 - Dutch families with homozygous mutations
- All patients
 - Died by 4 to 6 months
 - > Clonus / tremor
 - Generalized high amplitude tremor + clonus
 - Present at birth prior to cardiomyopathy symptoms
- Hallmarks were
 - Rapidly progressive myopathy
 - Myofibrillar disarray
 - Cardiomyopathy

Concluding Thoughts

- Myosinopathies should be considered in patients with tremor, hypotonia, and cardiomyopathy
- Genetic testing in this patient revealed pathogenic variants in MYL2 gene associated with congenital myopathy and cardiomyopathy
- MYL2 mutations can be rapidly fatal in first 3 to 4 months of life due to cardiomyopathy
- Heart transplantation went well for this patient and he continues to make developmental progress without striking weakness
- Prognosis unclear, but seems to have milder congenital myopathy

Thank You!

References:

1. Recessive MYL2 mutations cause infantile type I muscle fibre disease and cardiomyopathy. Marian A. J., Frank Baas, et. Al.. Brain 2013: 136; 282-293

Additional thanks to:

- Neuromuscular Faculty
- Adult and Pediatric MDA teams