No pain, no gain: a case of exercise-induced rhabdomyolysis

Kavitha T. Karnik, M.D., Fellow, Clinical Neurophysiology
Suur Biliciler, M.D., Neuromuscular Medicine
University of Texas Health Science Center- McGovern Medical School, Houston, TX

Case presentation

A 26 year old male presented to neuromuscular clinic for further evaluation of hyperCKemia and possible myopathy.

- ❖During childhood, he had 2 episodes of muscle stiffness:
 - Generalized stiffness during a hospitalization for a respiratory infection at age 2.
 - Brief, mild stiffness of his upper extremities following water rafting at age 10.

He reported having had an extensive neurogenetic workup, including muscle and skin biopsies with no conclusive diagnosis.

- Otherwise, he was asymptomatic in childhood and had remained very active throughout his life.
- ❖During routine checks, he would have elevated CK and transaminases.
- He denied episodes of myalgia or dark urine.

- Past medical history: as above
- Past surgical history: right shoulder arthroscopy 2012
- Medications: none
- Allergies: NKA
- Family history: Dementia, stroke; no h/o NM disease
- Social history: works as a landman- oil and gas; social alcohol consumption, no tobacco or illicit drug use
- ROS: fatigue, anxiety
- Neurologic exam: unremarkable

Initial diagnostic testing

- *Lab studies: Pyruvate, lactic acid, acylcarnitine, free fatty acids, urine organic acids, plasma amino acids, and transaminases (GGT, AST, ALT) all unremarkable
 - CK persistently elevated: 3580 at initial visit; 448 when checked 1 month later
- *EMG/NCV
- Unable to obtain previous biopsy slides from childhood

Nerve and Site	Lat ms	Amp mV	Segment	Dist mm	Lat Diff ms	CV m/s
Median.R to Abducto	or pollicis brevis	(C8-T1).F				
Wrist	3.2	13.4	Abductor pollicis brevis (C8-T1)-Wrist	70	3.2	
Elbow	7.3	11.8	Wrist-Elbow	245	4.1	60

Nerve	M-Lat ms	F-Lat ms	F-Lat Nl ≤ ms			
Tibial.R	4.3	46.3	56.0			
Sensory and Mixed	Nerve Conduc	ction:				
Nerve and Site	Onset Lat ms	Peak Lat ms	Amp μV	Segment	Dist mm	CV m/s
Median.R to Digit II (index finger).R					
Wrist	2.4	3.1	44	Wrist-Digit II (index finger)	130	54
				Wrist-Digit II (index finger)	130	54
Sural.R to Ankle.R						
Lower leg	2.8	3.5	19	Ankle-Lower leg	140	50

Needle EMG Examination:

Muscle	Insertion Activity	Spontaneous Activity			Volutional MUAPs						
		Fibs	PSW	Fasc	Other	Poly	Amp	Dur	Rate	Pattern	Effort
Tibialis anterior (L4-L5).R	Normal	0	0	0		None	Normal	Normal	Normal	Normal	Normal
Vastus lateralis (L2-L4).R	Normal	0	0	0		None	Normal	Normal	Normal	Normal	Normal
Iliopsoas (L3-L4).R	Normal	0	0	0		None	Normal	Normal	Normal	Normal	Normal
Biceps brachii (C5-C6).R	Normal	0	0	0		Few	Normal	Normal	Normal	Normal	Normal

Follow-up

- 6 months later, he experienced severe low back pain after an intense cross-fit exercise workout.
 - PCP prescribed pain and steroid medications.
 - That evening he developed dark urine, for which he presented to the ED, and was admitted and treated for rhabdomyolysis.

. CK trend:

Day 1	Day 2	Day 3	Day 4	Day 5
48,303	55,196	68,762	29,279	6,439

What would you do next?

- Repeat muscle biopsy?
- Genetic testing?
- Liver US?
- Non-ischemic forearm exercise test?

Genetic testing

Myopathy/Rhabdomyolysis
Myopathy/Rhabdomyolysis Panel by Massively Parallel Sequencing (BCM-MitomeNGS™)

Overall Results Summary

4533.22477.46

A heterozygous deletion involving the entire exon 18 of the LPIN1 gene and a heterozygous novel variant of uncertain significance, c.1535+4_1535+7delAGTA, in the LPIN1 gene, were detected.

Pathogenic Variant(s)/ Mutation(s)

Gene	Inheritance	OMIM	Change	Location	Zygosity	Reference(s) / Comment(s)	
LPIN1	AR	605518	c.2295-865_2410-30del (p.E766_\$838del)	exon 18	heterozygous	PMID: 20583302	141
Variant(s) of	f Uncertain S	gnifican	ce				
Gene	Inheritance	OMIM	Change	Location	Zygosity	Reference(s) / Comment(s)	
LPIN1	AR	605518	c.1535+4_1535+7delAGTA	intron 10	heterozygous	uncertain significance	

LPIN1 mutation

Recurrent rhabdomyolysis

- Acquired vs. hereditary
 - Metabolic with failure of energy production (mitochondrial FAO defects, inborn errors of glycogenolysis and glycolysis)
 - Structural (muscular dystrophies, myopathies)
 - Problems with calcium pump (RYR1 mutation)
 - Inflammatory (myositis)
- Approximately half of patients will not show a defect in these pathways

Hamel et al., J Inherit Metab Dis (2015) Zeharia et al., Am J Hum Genet (2008)

LPIN1 mutations in mice

- >20 years ago: LPIN1 mutations described in mice
 - Fatty liver dystrophy, peripheral neuropathy (lipin-1 expression in epineurium, endoneurium, perineurium)
 - Insulin resistance, severe hypertriglyceridemia
 - Overexpression of lipin-1 in transgenic mice caused obesity

- Mammalian lipin family: Lipin-1, Lipin-2, Lipin-3
 - LPIN2: Majeed syndrome- chronic recurrent multifocal osteomyelitis and congenital dyserythropoeitic anemia
 - * LPIN3: Not known to cause human disease

LPIN1 mutations in humans

- Zeharia et al. (2008)
 - Pediatric patients (n= 3) w/ lifethreatening episodes of rhabdomyolysis; mutations in LPIN1 gene (early stop codon)
 - Additional 22 pediatric patients w/ recurrent rhabdomyolysis; identified 5 additional LPIN1 mutations
 - Healthy in between episodes;
 normal fat distribution, lipid profile,
 glucose (including during episodes)

- Michot et al. (2010, 2012)
 - 29 pediatric patients w/ severe episodes of rhabdomyolysis in infancy
 - 59% cohort lipin-1 deficient (recessive nonsense or frameshift mutations, large-scale deletion)
 - No defects of LPIN2, LIPN3 genes a/w muscular manifestations

Lipin-1 deficiency

- Autosomal recessive
- LPIN1 mutations 2nd MCC of early-onset recurrent rhabdomyolysis (after FAO defects)
- Rhabdomyolysis episodes usually began before age 6
- MC triggers: febrile illness > prolonged exercise, fasting, anesthesia
- Lipin-1 expressed most in adipocytes and skeletal muscle

Pathogenic mechanism of *LPIN1* mutation causing rhabdomyolysis uncertain

Dual role of lipin-1

Triglyceride and phospholipid pathway

Potential treatment strategies

Symptomatic management

- Early detection
- Hyperhydration
- High energy intake from carbohydrates
- Monitoring for complications: hyperkalemia (cardiac monitoring), hypocalcemia, hepatic inflammation; acute renal failure due to myoglobinuria (late)

Establishing anabolism

- Pichler et al. (2015), proposed treatment with high-concentration glucose solution for prevention and early treatment of catabolism to improve prognosis in lipin-1 deficient patients
- Hyperhydration using 3 L/m2/day of 10% glucose (+NaCl, KCl)
- Reduced duration of rhabdomyolysis from 7-10 days (reported in literature) to 5 days (CK <10,000)</p>

Decreasing inflammation

- Catabolic stress (febrile illness, exercise) creates pro-inflammatory state
- High levels of circulating pro-inflammatory mediators chemokines, cytokines (TNF1-alpha, IL-1beta)—> exacerbate lipin-1 deficiency
- Dexamethasone (PGC-1alpha inducer) stimulates lipin-1 expression in adipose and liver, decreases inflammation
- Meijer et al. (2015) used dexamethasone, in addition to standard protocol
 - 4 y/o with LPIN1 mutation and severe clinical course
 - For 2 episodes: dexamethasone 0.6 mg/kg q24 hours (with 1 & 4 repeated doses, respectively)
 - Lower peak CK levels, well-tolerated

Summary

- Lipin-1 deficiency is an autosomal recessive disorder, common cause for recurrent rhabdomyolysis with onset in childhood
- Lipin-1 most commonly expressed in skeletal muscle, adipocytes; role in TAG and phospholipid metabolism, mitochondrial energy pathway
- Potential treatment strategies to reduce severity and duration of rhabdomyolysis episodes include
 - High concentration glucose solution (anabolism)
 - Dexamethasone (stimulates lipin-1 expression, anti-inflammatory)

Resources

Reue K, Zhang P. The lipin protein family: Dual roles in lipid biosynthesis and gene expression. FEBS Letters. 2008;582(1):90-96.

Zeharia A, Shaag A, Houtkooper RH, et al. Mutations in *LPIN1* Cause Recurrent Acute Myoglobinuria in Childhood. Am J Hum Genet. 2008;83:489-494.

Michot C, Hubert L, Brivet M, et al. *LPIN1* Gene Mutations: A Major Cause of Severe Rhabdomyolysis in Early Childhood. Hum Mutat. 2010;31:E1564-E1573.

Michot C, Hubert L, Romero NB, et al. Study of *LPIN1*, *LPIN2* and *LPIN3* in rhabdomyolysis and exercise-induced myalgia. J Inherit Metab Dis. 2012;35:1119-1128.

Michot C, Mamoune A, Vamecq J, et al. Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1 deficient myoblasts. Biochim Biophys Acta. 2013;1832(12):2103-2114.

Csaki LS, Dwyer JR, Fong LG, et al. Lipins, lipinopathies, and the modulation of cellular lipid storage and signaling. Prog in Lip Res. 2013;52(3): 305-316.

Schweitzer GG, Collier SL, Chen Z, et al. Rhabdomyolysis-Associated Mutations in Human *LPIN1* Lead to Loss of Phosphatidic Acid Phosphohydrolase Activity. J Inherit Metab Dis. 2015;23:113-122.

Pichler K, Scholl-Buergi S, Birnbacher R, et al. A novel therapeutic approach for *LPIN1* mutation-associated rhabdomyolysis- The Austrian experience. Muscle Nerve. 2015;52:437-439.

Meijer IA, Sasarman F, Maftei C, et al. *LPIN1* deficiency with severe recurrent rhabdomyolysis and persistent elevation of creatine kinase levels due to chromosome 2 maternal isodisomy. Mol Genet Metab Rep. 2015;5:85-88.

Hamel Y, Mamoune A, Mauvais FX, et al. Acute rhabdomyolysis and inflammation. J Inherit Metab Dis. 2015;38:621-628.