ATYPICAL CASES OF A COMMON NEUROMUSCULAR DISORDER

Jenna Klotz, MD

Pediatric Neuromuscular Fellow
Division of Neuromuscular Medicine
Department of Neurology
Stanford University
HYPERTONIC INFANT

• Birth history:
 • Born at 39 3/7 weeks
 • Delivery complicated by late decels, nuchal cord and meconium
 • Apgars 7, 8
 • Exam: Low tone, incomplete Moro, partial grasp, absent suck
 • Cord VBG: 6.87/75.4/15/-19

• NICU course:
 • Therapeutic hypothermia x 72 hours
 • EEG: excessive sharp waves, no seizures
 • MRI brain: normal
 • Stayed in NICU until 11 days old for feeding
 • Exam at discharge: Increased appendicular tone

• Labs:
 • Lactic acid: 9.1 → 2.3
 • Ammonia: 54 → 44
 • CK: > 16,000 → 4851
HYPERTONIC INFANT

- Evaluated in neuromuscular clinic at 3 months
- Exam: Increased muscle bulk with firm consistency, increased tone, hyperreflexia
- CK 7467

- EMG/NCS:
 - Normal NCS upper and lower extremities
- EMG:
 - No abnormal spontaneous activity
 - Myopathic units, full early recruitment in biceps, TA and paraspinals
PATIENT 2
6 YO MALE WITH EXERCISE-INDUCED MUSCLE STIFFNESS

- 6 yo male presenting with episodic muscle stiffness triggered by exercise
 - 1st noticed at age 3 y
 - After playing soccer for 10-15 minutes, he would run stiff-legged
 - After playing with legos for a long time, reported arm pain and stiffness
 - Episodes resolve with rest

- No history of myoglobinuria
- No association with fasting, temperature, illnesses
- Episode witnessed by orthopedics team in clinic:
 - Walking with knees locked in extension
 - Muscles did not appear tense
 - Examiner gradually able to passively flex leg at knee
EXERCISE-INDUCED MUSCLE STIFFNESS

- Past medical history: Simple febrile seizure
- Developmental history: Normal
- Family history: Febrile seizures in father and several paternal uncles
- Exam: Normal
 - No myotonia
 - Negative Trousseau’s maneuver
 - Floor to stand 1.8 seconds, no Gower’s sign
 - 10 m run: 3.2 seconds

Labs:
- Lactic acid 1.2
- Ammonia 37
- Pyruvic acid 0.7
- CK 6915

MRI knee
PATIENT 3
6 YO FEMALE WITH LIMB-GIRDLE WEAKNESS

- Normal pregnancy and early development, walked at 14 months
- Preschool: Not as active as other children, not able to run or jump as well
- At age 6: Trouble with stairs and standing up from the ground, fatigue with short distances
6 YO F WITH LIMB-GIRDLE WEAKNESS

- Exam:
 - CN normal, no macroglossia
 - Increased bulk and fibrotic consistency of calf muscles
 - Neck flexion, hip flexion, extension, abduction and ankle dorsiflexion weakness
 - DTR 2+
 - Unable to perform a squat or heel walk
 - + Gower’s sign

- ESR 19
- CK > 12,000 → 5835
THOUGHTS?
GENETIC TESTING RESULTS
<table>
<thead>
<tr>
<th>Patient</th>
<th>Dystrophin testing results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 base pair deletion in exon 62: c.9204_9207delCAAA; p.Asn3068Lysfs*20</td>
</tr>
<tr>
<td>2</td>
<td>In-frame deletion exons 14-30</td>
</tr>
<tr>
<td>3</td>
<td>Single base pair insertion in codon 413 (exon 10)</td>
</tr>
</tbody>
</table>
DYSTROPHINOPATHY

CLASSIC
- Duchenne Muscular Dystrophy
 - CK > 10x normal
 - Complete/near complete absence of dystrophin
 - Symptom onset < 5 yo
 - Non-ambulatory by 13 yo

- Becker Muscular Dystrophy
 - CK > 5x normal
 - Later onset, non-ambulatory > 16 yo

ATYPICAL PRESENTATIONS
- Dilated cardiomyopathy
- Asymptomatic hyperCKemia
- Muscle cramps with myoglobinuria
- Intellectual disability without muscle disease
- Symptomatic females
PATIENT FOLLOW UP

PATIENT 1
- 3 yo male
 - Receptive/expressive language delay
 - Mild cognitive, gross motor and fine motor delays
 - Calf pseudohypertrophy
 - Tight heel cords
 - DTR 2+

PATIENT 2
- 7 yo male:
 - Still having episodes of stiffness with exercise
 - Normal PFTs and echocardiogram
 - No weakness

PATIENT 3
- 17 yo female:
 - On weekend dosing of prednisone
 - Still ambulatory, + waddling gait
 - Asymmetric proximal > distal, right > left weakness
 - Mother negative for mutation in dystrophin
Dystrophinopathies are a spectrum of disorders

Brandesma JF and Darras BT. Dystrophinopathies. Semin Neurol 2015;35:369-384
THANK YOU

- **Sarada Sakamuri, MD**
- **Carolina Tesi Rocha, MD**

- **Stanford Neuromuscular and Pediatric Neuromuscular Team:**

 - John W. Day, MD, PhD
 - Neelam Goyal, MD
 - Jacinda Sampson, MD
 - Karolina Watson, NP
 - Michileen Oberst, LCSW
 - Janis Kitsuwa-Lowe, OTR/L
 - Rika Yamasaki
 - Erum Jahan

 - S. Charles Cho, MD
 - Safwan Jaradeh, MD
 - Yuen So, MD
 - Jessica Guzman, RN
 - Bridgette Donahue, MPT
 - Judy Henderson, CCC-SLP
 - Tim Fassler
 - Mauricio Rodriguez

 - Les Dorfman, MD
 - Srikanth Muppidi, MD
 - Hannes Vogel, MD
 - Carly Siskind, MS, LCGC
 - Richard Gee, MPT
 - Gayla Weng
 - Ewa Fratczak
 - MyMy Buu, MD
REFERENCES

• Brandsema JF and Darras BT, Dystrophinopathies, Semin Neurol;2015:369-384.
• Liewluck T et al., Dystrophinopathy mimicking metabolic myopathies. Neuromuscular Disorders, 2015;653-657.
• Magri F et al., Genotype and phenotype characterization in a large dystrophinopathic cohort with extended follow up. J Neurol.2011;258:1610-1623.