

Hyperaldosteronism: Diagnostic Dilemmas and Future Directions

Sasan Mirfakhraee, M.D.

Associate Professor, Division of Endocrinology & Metabolism, UTSW

Program Director, Division of Endocrinology & Metabolism, UTSW

Hyperaldosteronism: Misconceptions

- 1. "Primary Aldosteronism (PA) is rare"
 - Actually, PA prevalence is ~5% in all HTN, up to 20% in resistant HTN¹
- 2. "I only need to test for PA if hypokalemia is present"
 - Hypokalemia is only seen in 25% of PA pts²
- 3. "Hypertensive pts are appropriately screened for PA"
 - In the US, only ~1 in 550 pts with PA are dx'ed and treated³

Hyperaldosteronism: Case 1

45 y/o female with longstanding HTN

- Currently on 4-drug antihypertensive therapy with good BP control
 - Chlorthalidone, lisinopril, amlodipine, and hydralazine
- Screening for PA performed
 - PAC (aldosterone) 21 ng/dL, PRA (renin) < 0.6 ng/mL/h, Serum [K] 3.6
- Pt not interested in surgical evaluation
 - "My BP is great, and I don't mind taking a few pills."
- It is reasonable to continue the pt's antihypertensives since BP at target?

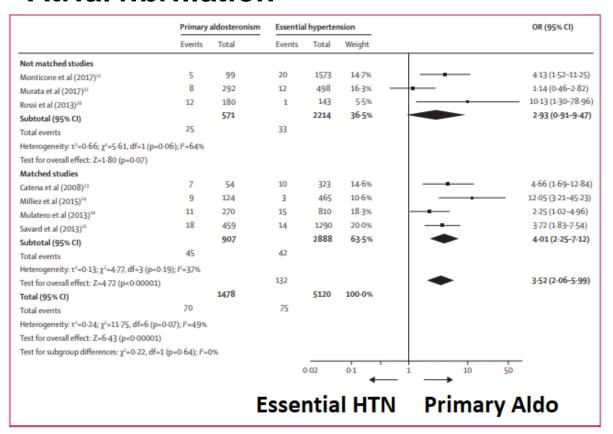
Hyperaldosteronism: Target Organ Damage

Stroke

	Primary aldosteronism		Essential hypertension		nsion		OR (95% CI)
	Events	Total	Events	Total	Weight		
Not matched studies							
Monticone at al (2017) ²¹	6	99	53	1573	11-1% —	-	1.85 (0.78-4.42)
Murata et al (2017) ¹⁷	30	292	22	498	25.7%	_ -	2.48 (1.40-4.38)
Subtotal (95% CI)		391		2071	36-8%		2-27 (1-41-3-66)
Total events	36		75				
Heterogeneity: τ²=0-00; χ²=0-30, df=1 (p=0-59); l²=09	6						
Test for overall effect: Z=3·37 (p=0·0008)							
Matched studies							
Catena et al (2008) ²³	6	54	9	323	7.2%		4-36 (1-49-12-80)
Milliez et al (2015) ²⁴	16	124	16	465	15-9%	_ -	4-16 (2-02-8-58)
Mulatero et al (2013) ¹⁴	20	270	28	810	23.9%		2-23 (1-24-4-04)
Takedaet al (1995) ¹³	24	224	12	224	16.2%		2-12 (1-03-4-35)
Subtotal (95% CI)		672		1822	63-2%	-	2.78 (1.93-4.00)
Total events	66		65				
Heterogeneity: r2=0-00; x2=2-93, df=3 (p=0-40); l2=09	6						
Test for overall effect: Z=5·52 (p<0·00001)							
Total (95% CI)		1063		3893	100-0%	•	2.58 (1.93-3.45)
Total events	102		140				
Heterogeneity: τ ² =0-00; χ ² =3-68, df=5 (p=0-60); l ² =0.	6						
Test for overall effect: Z=6-43 (p<0-00001)							
Test for subgroup differences: χ ³ =0-44, df=1 (p=0-51);	P=0%						
			0.05	0.	2	1 15	20
				←	_	→	
		Fcc	ent	ial	HTN	Primary	
		LS	CIII	Iai	11114	Fillialy	AIUU

OR 2.58 (1.93-3.45)

CAD


	Primary aldosteronism		Essential hypertension			OR (95% CI)			
	Events	Total	Events	Total	Weight				
Not matched studies									
Monticone et al (2017) ²¹	4	99	19	1573	10.4%				3-44 (1-15-10-32)
Murata et al (2017) ²²	7	292	8	498	11.2%				1.50 (0.54-4.19)
Subtotal (95% CI)		391		2071	21.5%				2-22 (0-99-4-99)
Total events	11		27						
Heterogeneity: τ³=0-05; χ³=1-17, df=1 (p=0-28); l³=14%									
Test for overall effect: Z=1-93 (p=0-05)									
Matched studies									
Catena et al (2008) ²³	11	54	27	323	14.5%		I —	-	2.80 (1.30-6.06)
Milliez et al (2015) ²⁴	5	124	3	465	7-3%		-		6-47 (1-52-27-46)
Mulatero et al (2013) ¹⁴	7	270	25	810	13-4%	_			0-84 (0-36-1-95)
Reincke et al (2012) ²⁵	13	281	10	281	13-5%			_	1-31 (0-57-3-05)
Savard et al (2013) ¹²	46	459	58	1290	20-3%		-	-	2-37 (1-58-3-54)
Takeda et al (1995) ¹³	4	224	9	224	9.4%		-		0.43 (0.13-1.43)
Subtotal (95% CI)		1412		3393	78-5%			-	1.65 (0.92-2.95)
Total events	86		132						
Heterogeneity: τ³=0-33; χ²=15-08, df=5 (p=0-01); l²=67%									
Test for overall effect: Z=1-67 (p=0-10)									
Total (95% CI)		1803		5464	100-0%			-	1.77 (1.10-2.83)
Total events	97		159						
Heterogeneity: τ²=0·24; χ²=16-41, df=7 (p=0-02); l²=57%									
Test for overall effect: Z=2·38 (p=0·02)									
Test for subgroup differences: χ²=0·35, df=1 (p=0·56); l²=0%									
							_	-	20
					0-05	0.2	1	5 2	20
						tial Hi	FNI	Drima	w. Alda
					csser	ıcıal H	IV	Prima	ry Aldo

OR 1.77 (1.1-2.83)

Hyperaldosteronism: Target Organ Damage

Atrial fibrillation

OR 3.52 (2.06-5.99)

Heart Failure

	Primary	Primary aldosteronism		Essential hypertension			OR (95% CI)
	Events	Total	Events	Total	Weight		
Not matched studies							
Monticone et al (2017) ²¹	0	99	2	1573	3.9% —	- •	3-16 (0-15-66-2
Murata et al (2017) ²²	6	292	6	498	21.1%		1.72 (0.55-5.38
Subtotal (95% CI)		391		2071	24.9%		1-85 (1-64-5-4
Total events	6		8				
Heterogeneity: τ ³ =0-00; χ ² =0-13, df=1 (p=0-71)	; I ² =0%						
Test for overall effect: Z=1-13 (p=0-26)							
Matched studies							
Mulatero et al (2013) ¹⁴	2	270	2	810	8-7%	-	3-01 (0-42-21-5
Savard et al (2013) ¹²	19	459	16	1290	40.1%		3-44 (1-75-6-75
Takeda et al (1995) ¹³	8	224	9	224	26-4%	-	0.88 (0.34-2.34
Subtotal (95% CI)		953		2324	75-1%		2-03 (0-75-5-5
Total events	29		27				
Heterogeneity: τ ² =0-45; χ ² =5-16, df=2 (p=0-08)); l ² =61%						
Test for overall effect: Z=1-39 (p=0-16)							
Total (95% CI)		1344		4395	100-0%	-	2-05 (1-11-3-7
Total events	35		35				
Heterogeneity: τ²=0·13; χ²=5·40, df=4 (p=0·25)); l ² =26%						
Test for overall effect: Z=2·29 (p=0·02)							
Test for subgroup differences: χ²=0-02, df=1 (p-	=0·90); l ² =0%						
				0.01	0.1	1 10	100
				0.02	←	\longrightarrow	200
			cco	ntia	I HTN	I Drim	ary Aldo
			.556	וונום		y FIIIII	ai y Aiuc

OR 2.05 (1.11-3.78)

45 y/o female with longstanding HTN

- Currently on 4-drug antihypertensive therapy with good BP control
 - Chlorthalidone, lisinopril, amlodipine, and hydralazine
- Positive PA screen
- Pt not interested in surgical evaluation
 - "My BP is great, and I don't mind taking a few pills."
- It is reasonable to continue the pt's antihypertensives since BP at target?

No. Risk of CV events and organ damage increased in PA independent of BP

Hyperaldosteronism: Case 2

- 39 y/o man on 4-drug antihypertensive therapy with appropriate control
- Is screening for PA necessary?

Hyperaldosteronism: Whom to Screen?

VS

Patients with sustained blood pressure above 150/100 mmHg, grade 2 and grade 3 hypertension Patients with resistant hypertension (blood pressure not controlled by three conventional drugs including a diuretic) or controlled BP (<140/90 mmHg) on four or more antihypertensive drugs

Patients with hypertension and spontaneous or diuretic induced hypokalemia

Patients with hypertension and an adrenal incidentaloma Patients with hypertension and sleep apnea

Patients with hypertension and a family history of early-onset hypertension or cerebrovascular accident at a young age (<40 years)

All first-degree relatives of patients with PA

When to Consider Testing for Primary Aldosteronism:

All patients with hypertension should be tested at least once

PAC ≥10 ng dL⁻¹ and \downarrow PRA (<1 ng mL⁻¹ h⁻¹)

Endocrine Society Guidelines, 2016

Young, WF. Diagnosis and treatment of primary aldosteronism. J Intern Med 2019; 285: 126-148.

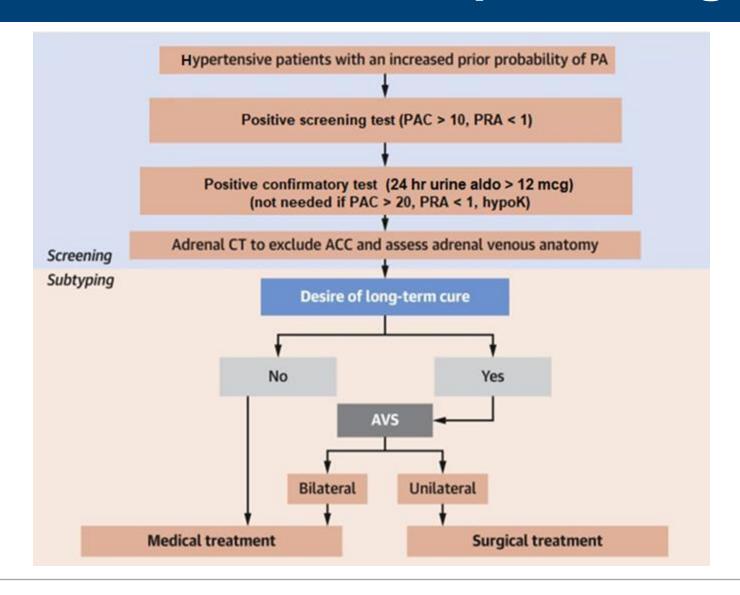
The Time has Come for Systematic Screening for Primary Aldosteronism in All Hypertensives*

Giuseppe Maiolino, MD, PhD,^a Lorenzo A. Calò, MD, PhD,^b Gian Paolo Rossi, MD^a

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY
© 2017 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION
PUBLISHED BY ELSEVIER

VOL. 69, NO. 14, 2017

ISSN 0735-1097/\$36.00

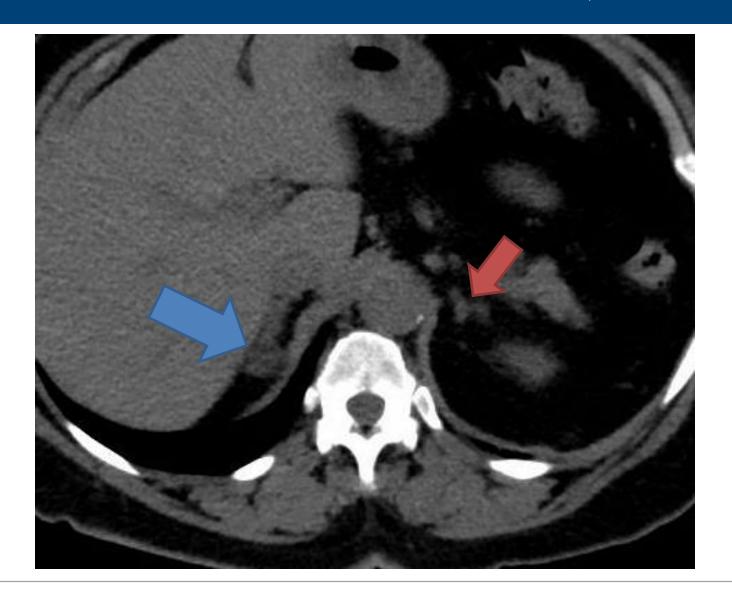

http://dx.doi.org/10.1016/j.jacc.2017.02.041

- 39 y/o man on 4-drug antihypertensive therapy with good BP control
- Is screening for PA necessary? Yes

■ Aldosterone 11 (16:30), renin < 0.6, serum [K] 3.1

- After KCI supplementation and change to 09:00 collection
 - Aldosterone 16, renin < 0.6, serum [K] 3.9

Hyperaldosteronism: Simplified Algorithm

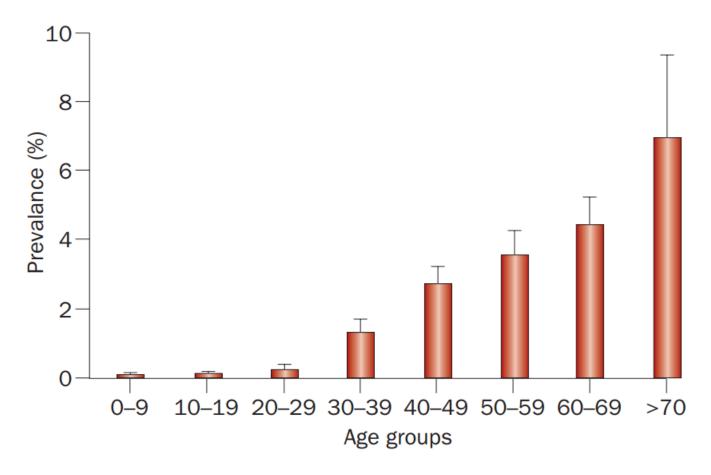


39 y/o man on 4-drug antihypertensive therapy

Positive biochemical screen for PA

■ 24 hr urine: Na 240 mmol, aldosterone 13.4 mcg, creat 1.5

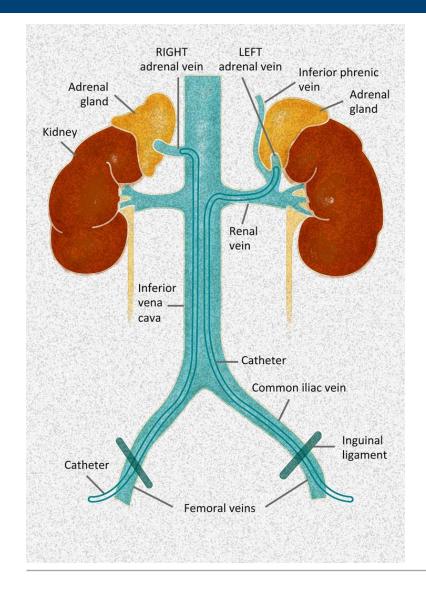
39 y/o man on 4-drug antihypertensive therapy


- Positive biochemical screen for PA
- CT abd/pelvis with right-sided 1.5 cm adenoma

Is AVS needed?

Hyperaldosteronism: Limitation of CT Abd

High Prevalence of Adrenal Incidentaloma in General Population



Hyperaldosteronism: Poor CT Abd Performance

Study	Number of Subjects	Accuracy of CT for Aldo Hypersecretion
Young WF, et al (2004)	194	53%
Nwariaku FE, et al (2006)	48	54%
Lim V, et al (2014)	143	59%
Ladurner R, et al (2017)	152	61%

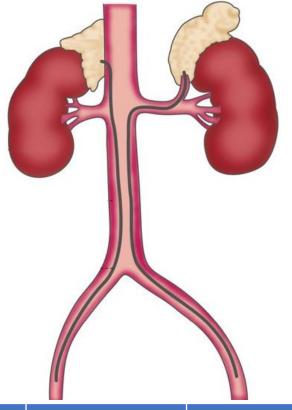
Hyperaldosteronism: Adrenal Venous Sampling

- Adrenal veins cannulated by IR sequentially
- Aldosterone and cortisol levels are measured simultaneously from L + R adrenal veins and IVC

"Are catheters in correct position?" – Selectivity Index (SI)

• Adrenal:IVC cortisol ≥ 3 shows correct catheterization

"Does aldo production lateralize?" – Lateralization Index (LI)


Dominant Aldo:cortisol/Non-dominant aldo:cortisol ≥ 4

- 39 y/o man with primary aldosteronism
- CT abd/pelvis with right-sided 1.5 cm adenoma

AVS performed...

"Are catheters in correct position?" Adrenal:IVC cortisol ≥ 3 shows correct catheterization

Cortisol	(mcg/dL)	
IVC	L adrenal vein	R adrenal vein
36.1	581.2	840

Aldosterone	(ng/dL)	
IVC	L adrenal vein	R adrenal vein
23.2	3400	362

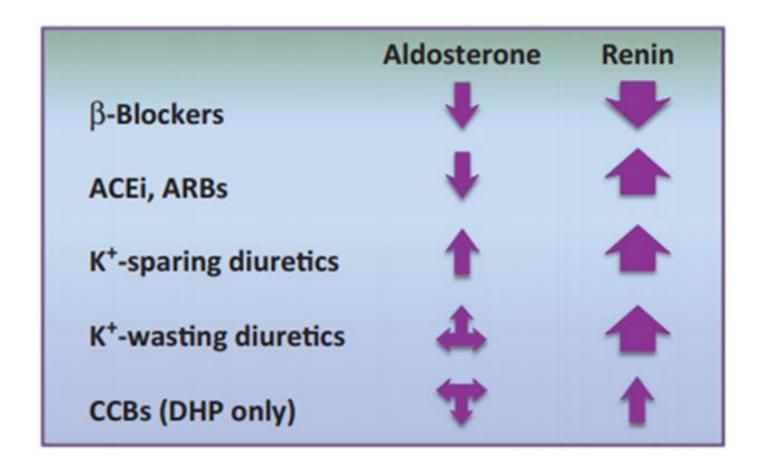
Aldo/Cortisol		
IVC	L adrenal vein	R adrenal vein
0.64	5.85	0.43

Pt underwent L adrenalectomy

Post-operatively, potassium supplements and ACE-I held

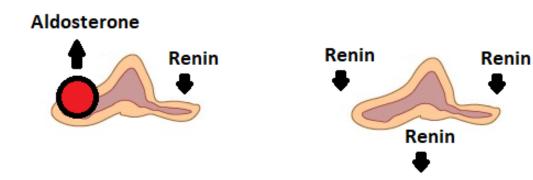
One week later

- HTN improved (4 BP drugs -> amlodipine monotherapy)
- Hyperkalemia to 6.1 -> treated with fludrocortisone x 6 wks

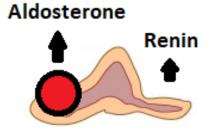

Hyperaldosteronism: Case 3

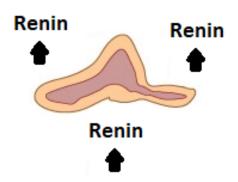
56 y/o man with HTN

- BP controlled while on spironolactone 50 mg daily, amlodipine 10 mg daily
- Screening for PA performed
 - PAC 21 ng/dL, PRA < 0.6 ng/mL/h, [K] 3.4
- Can these results be interpreted while on BP meds?
 - Yes! No BP med will cause false positive testing for PA
 - But if PAC elevated and PRA not suppressed, hold BP meds (or switch to alpha blocker or CCB) and repeat testing in 2 wks

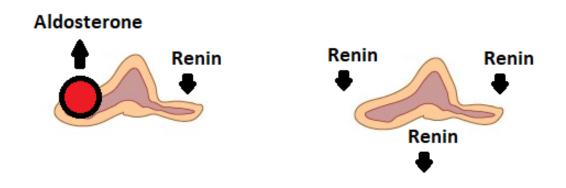


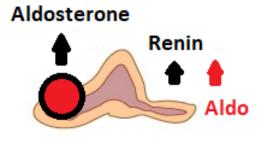
Hyperaldosteronism: Med Effect on Aldo/Renin

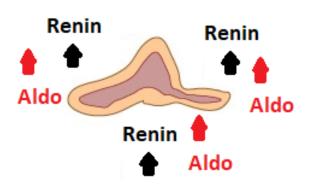

Aldo Interpretation Based on Renin Levels


Adenoma with suppressed renin

Adenoma without suppressed renin




Aldo Interpretation Based on Renin Levels


Adenoma with suppressed renin

Adenoma without suppressed renin

Hyperaldosteronism: Case 4

65 y/o man with longstanding HTN

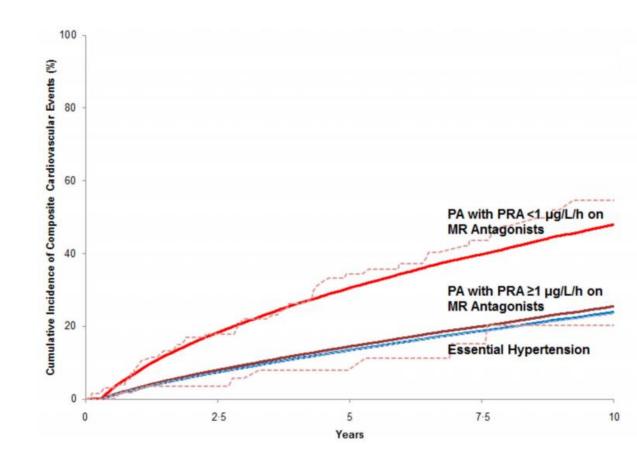
- Positive testing for PA
- CT abdomen unremarkable
- AVS discussed with the patient, but he is concerned about complications
- He asks, "Could this be managed with a medication instead?"

Hyperaldosteronism: Challenges

1. Spironolactone Tolerability

- Incidence of gynecomastia
 - 10% with 25 mg daily¹
 - 30% with 100 mg daily²
 - 62% with 200 mg daily²

Hyperaldosteronism: Goals of Therapy


- 1. Spironolactone Tolerability
 - Incidence of gynecomastia
 - 10% with 25 mg daily¹
 - 30% with 100 mg daily²
 - 62% with 200 mg daily²
- 2. Goals of therapy not entirely straightforward
 - BP control not enough, need adequate MR blockade
 - Serum [K] > 4.5, PRA > 1

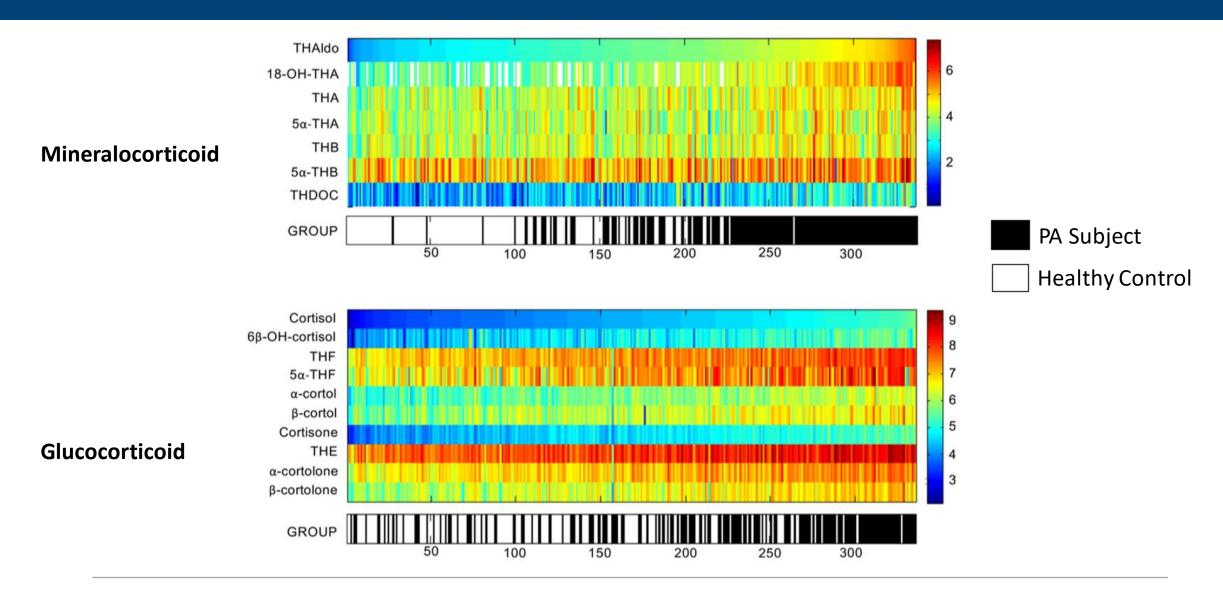
Hyperaldosteronism: Treat to Renin > 1

- 602 PA pts treated with MR antagonists
- 41,853 age-matched pts with essential HTN
- 1° outcome incident CV event
 - MI, revascularization, CHF admit, CVA

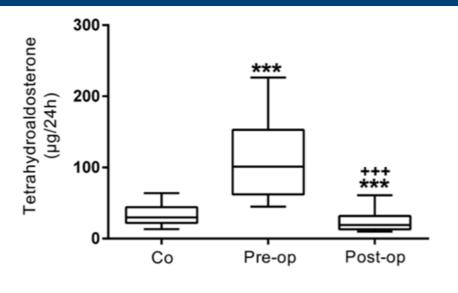
- Found 2x risk in PA vs essential HTN
- UNLESS treated to PRA > 1 (no diff)

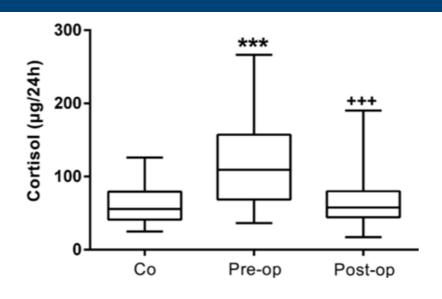
Hyperaldosteronism: Pearls of Med Therapy

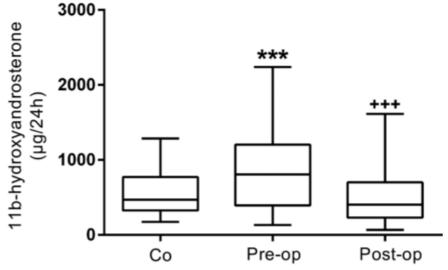
- 1. High doses of spironolactone generally not needed
 - MR blockade achieved in > 90% of PA pts with 50 mg spironolactone¹
- 2. In case of antiandrogenic side effects, switch to eplerenone
 - Eplerenone must be given twice daily (3-6hr half life)
 - So, if pt intolerant of spironolactone 50 mg daily, use eplerenone 50 mg bid
- 3. PA is a hyperfiltration state: eGFR will decrease with MRA therapy²
 - Mean decrease in eGFR of 15 ml/min per 1.73 m²



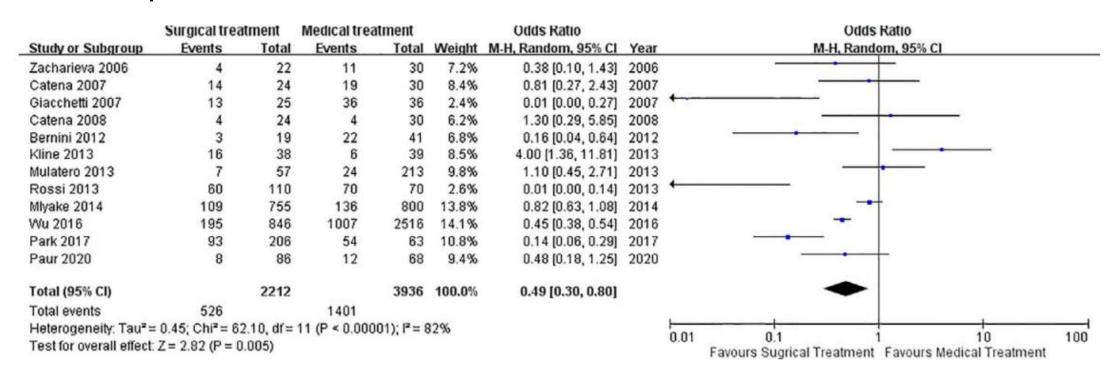
Hyperaldosteronism: Not Just a Salt Problem


- 1. Spironolactone Tolerability
 - Incidence of gynecomastia
 - 10% with 25 mg daily¹
 - 30% with 100 mg daily²
 - 62% with 200 mg daily²
- 2. Goals of therapy not entirely straightforward
 - BP control not enough, need adequate MR blockade
 - Serum [K] > 4.5, PRA > 1
- 3. Is MR blockade enough?
 - How do we deal with glucocorticoid excess in PA?




Hyperaldosteronism: Not Just Salt

Hyperaldosteronism: Not Just Salt



Is MRA therapy enough?

Hyperaldosteronism: Medical vs Surgical Rx

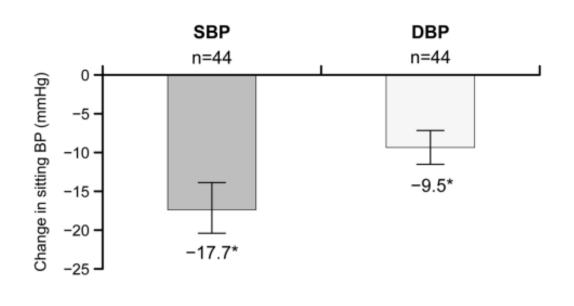
12 studies including 6148 PA pts

- Surgery (versus medical therapy)
 - Lower incidence of composite CV outcomes
 - Less persistence of HTN

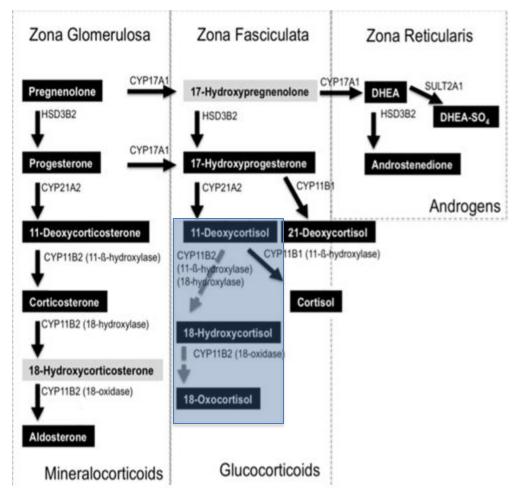
Hyperaldosteronism: Future Directions

High Affinity, Selective, MRAs

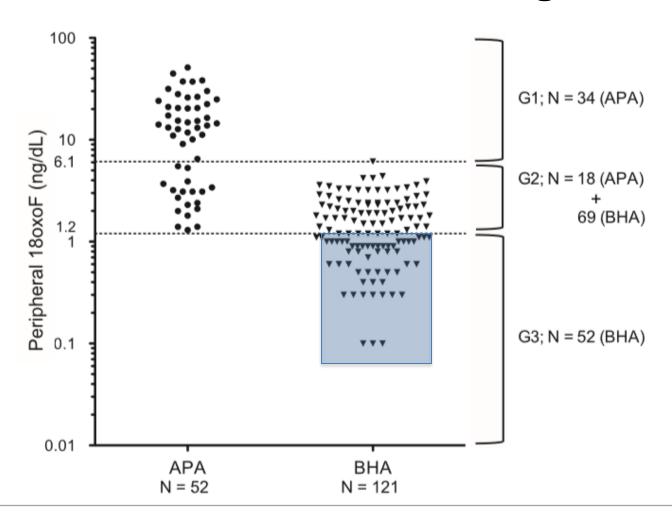
Esaxerenone


Future Subtype Studies for PA

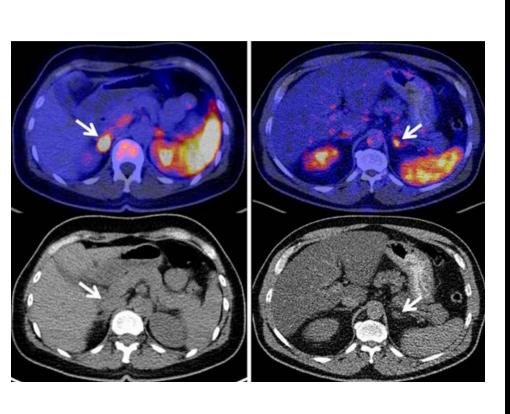
- Peripheral "hybrid" steroids (18-Oxocortisol)
- Nuclear Imaging (68Ga-Pentixafor)

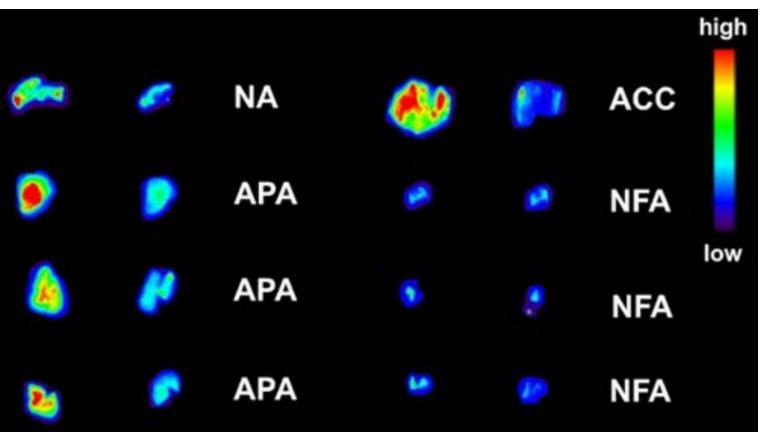

Hyperaldosteronism: Esaxerenone

	Spironolactone	Eplerenone	Esaxerenone
Chemical structure	H H I I I I I I I I I I I I I I I I I I	HH H O OCH3	HO N H CH ₃
Molecular formula	$\mathrm{C}_{24}\mathrm{H}_{32}\mathrm{O}_4\mathrm{S}$	$C_{24}H_{30}O_6$	$C_{22}H_{21}F_3N_2O_4S$
Oral bioavailability	60–90%	69%	90%
EC ₅₀ or IC ₅₀ (nM) (rats or rabbits)			
MR	36	713	9.4
GR	764	3060	>10,000
AR	133	>100,000	>10,000
PR	1200	>100,000	>10,000
$T_{1/2}$	Human: >12 h	Human: 3–5 h	Human: 18.6–25.1 h Monkey: 10–13 h


Hyperaldosteronism: 18-Oxocortisol

Peripheral 18-Oxocortisol to Distinguish APA from BHA


Hyperaldosteronism: 18-Oxocortisol


Peripheral 18-Oxocortisol to Distinguish APA from BHA

Hyperaldosteronism: Functional Imaging

68Ga-Pentixafor Targets CXCR4 in Aldo-Producing Adenomas

Hyperaldosteronism: Summary

- PA associated with cardiac/renal injury if aldosterone excess not addressed
 - EVEN if BP controlled with other antihypertensives
- When screening hypertensive pts for PA
 - Positive screen is aldo > 10 ng/dL and PRA < 1 (early morning collection)
 - If aldo > 10 but PRA > 1,
 - Hold other BP meds (can use α- or CCB) and recheck aldo:renin in 2 wks
 - Within 6 weeks, renin should fall if PA present
- Can do screening, confirmatory, and AVS testing for PA if spironolactone used
 - BUT ONLY if renin is suppressed (i.e., PRA < 1)
- Most effective tx for APA is adrenalectomy; if bilateral, use MR antag.
- If treating medically, must have adequate MR blockade
 - Target serum [K] of ~4.5, PRA > 1

