

COVID-19 Update: Where are we now?

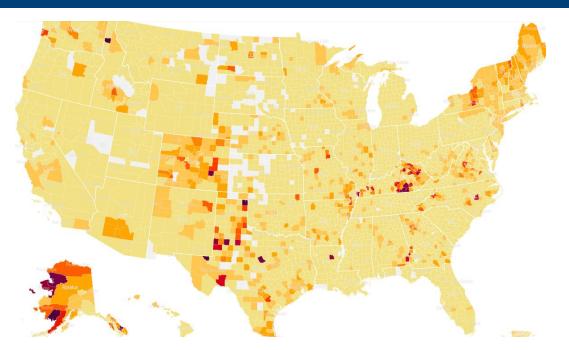
James "Brad" Cutrell, MD FIDSA

Associate Professor of Internal Medicine

Division of Infectious Diseases and Geographic Medicine

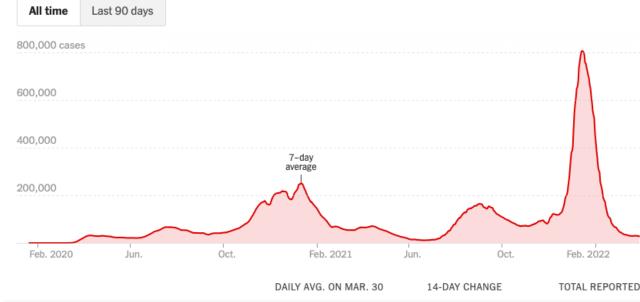
UT Southwestern Medical Center

Disclosures


- I have no financial disclosures.
- I served as an unpaid co-investigator for COVID-19 clinical trials from Gilead, Regeneron, and the NIH.
- I will be discussing off-label and emergency use authorized treatments for COVID-19.

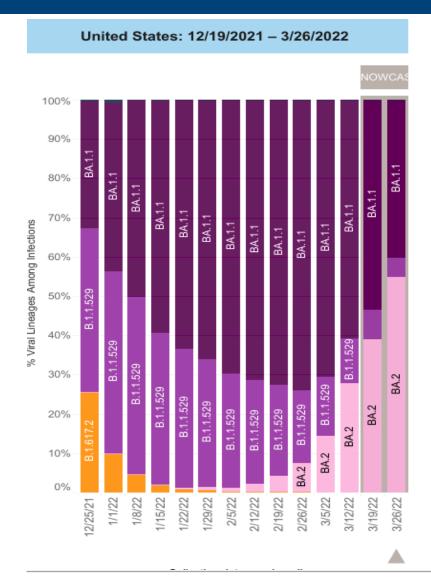
Outline

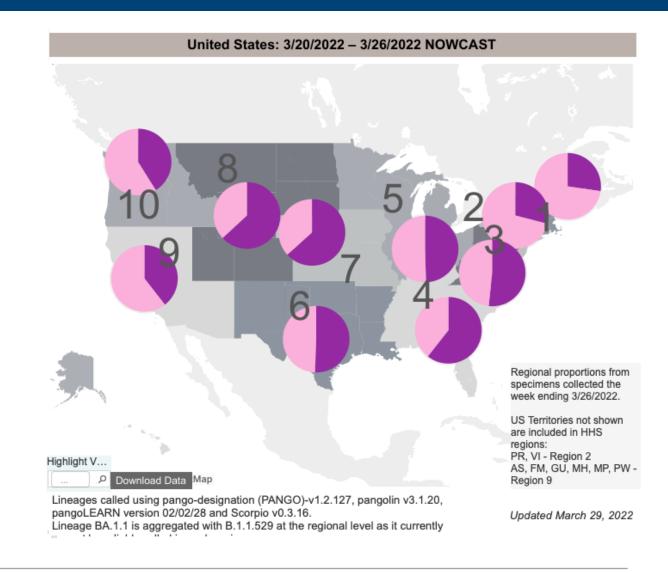
- COVID-19 Epidemiology and Emerging Variants
- COVID-19 Management and Prevention Updates
- COVID-19 Vaccination Updates


COVID-19 in the United States

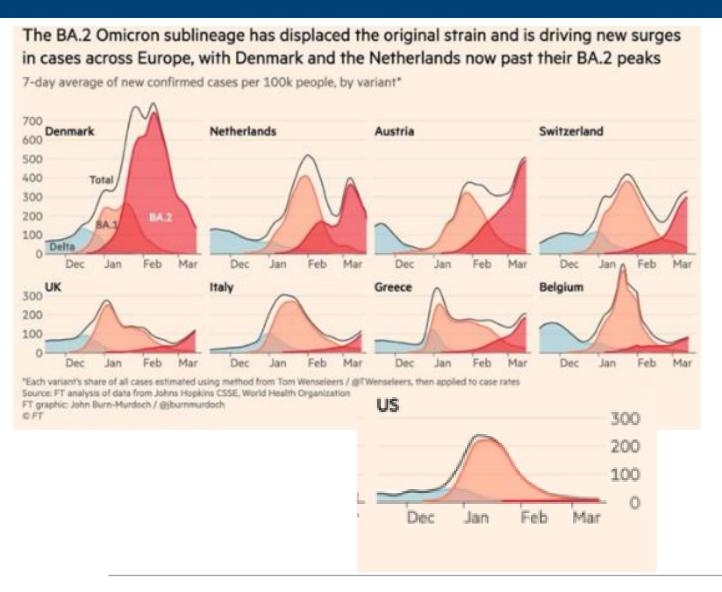
Vaccinations

	AT LEAST ONE DOSE	FULLY VACCINATED
All ages	77%	65%
and up	82%	70%
5 and up	95%	89%


New reported cases



	DAILY AVG. ON MAR. 30	14-DAY CHANGE	TOTAL REPORTED
Cases	27,621	-12%	79,969,941
Tests	888,308	+7%	
Hospitalized	17,092	-33%	
In I.C.U.s	2,700	-40%	
Deaths	702	-44%	978,387


About this data

COVID-19 Variants in the US

Omicron Subvariants: BA.1 vs. BA.2

BA.2: More transmissible, similar disease severity and vaccine efficacy to BA.1

Feature	BA.1	BA.2
Transmission (infectiousness)	Reference	30% higher
Viral Load	Reference	Nearly 2-fold
Mutations in Spike	Reference	8 different, not shared
Neutralizing antibodies median titer	Reference	Lower level, ~70%
Disease-causing potential (virulence)	Reference	Same, but infects many more people
2-shot effectiveness vs hospitalizations*		
Up to 6 months	63% (95% CI 47,75)	69% (95% CI 27,87)
Past 6 months	32% (95% CI 11,49)	50% (95% CI 7,73)
3-shot effectiveness vs hospitalizations *		
Up to 70-days	81% (95% CI 75,85)	83% (95% CI 71,91)
Past 70-days	73% (95% CI 65,79)	70% (95% CI 50,82)

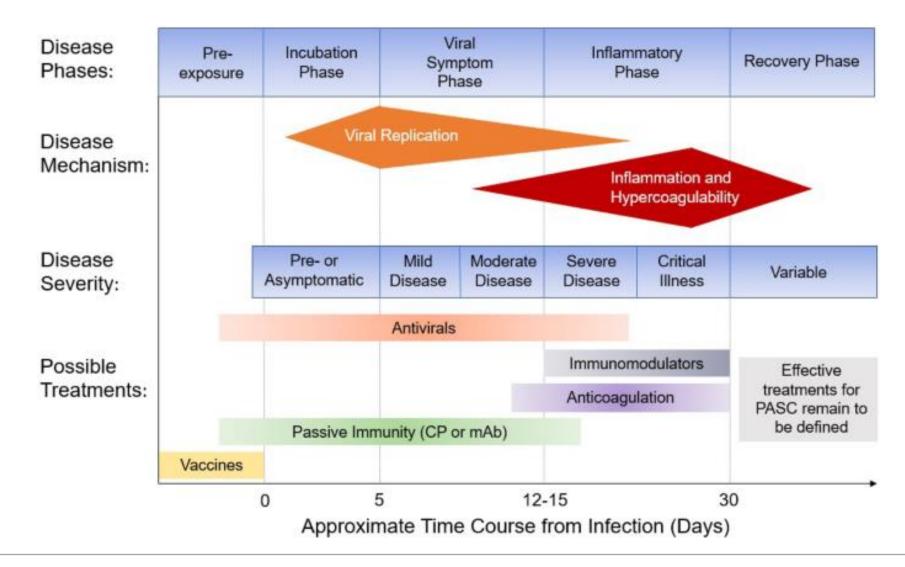
^{*}data from UKHSA March 24 report using Emergence Care dataset, includes

@erictopol

[&]quot;for" and "with" Covid so under-estimates effectiveness

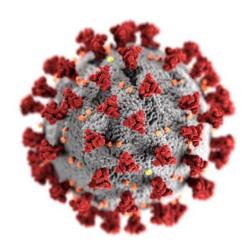
Outline

- COVID-19 Epidemiology and Emerging Variants
- COVID-19 Management and Prevention Updates
- COVID-19 Vaccination Updates


COVID-19 Disease Severity Classification

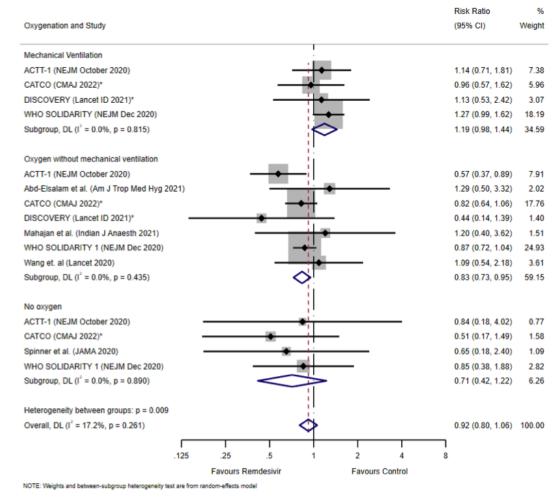
Disease Category	Clinical Definition
Asymptomatic COVID-19	Viral replication without symptoms
Mild COVID-19	Symptomatic, no hypoxia or signs of PNA, no ongoing medical care
Moderate COVID-19	Symptomatic, signs of PNA or ongoing medical care but no hypoxia at rest (O₂ ≥ 94% on room air)
Severe COVID-19	Hypoxic at rest (O₂ < 94% on room air), RR > 30, P/F ratio < 300, >50% lung infiltrates; some subdivide between low-flow vs. high-flow O_2/NIV
Critical COVID-19	ARDS or septic shock; requiring Mechanical ventilation or ECMO

Must pay attention to trial methods because some define these categories differently, <u>particularly severe disease</u>



COVID-19 Therapeutics: Where are we now?

Antivirals


- Agents directly targeting SARS-CoV-2 replication
- Likely work best in early viral phase or as prophylaxis
- Example Agents
 - Remdesivir (RDV)
 - Nirmatrelvir/ritonavir (Paxlovid)
 - Molnupiravir

Updated Remdesivir Meta-Analysis

- Updated RDV meta-analysis including 8 RCTs (latest CATCO trial), 9157 patients
- Risk ratio for mortality based on baseline oxygen needs:
- MV: 1.19 (0.98-1.44)
- On O₂: **0.83 (0.73-0.95)**
- No O₂: 0.71 (0.42-1.22)

Figure 1 - Random Effects Meta-Analysis

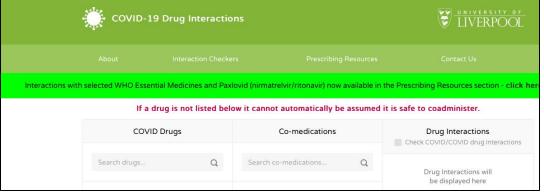
*Excludes patients already included in SOLIDARITY (NEJM 2020)

Outpatient Short-course Remdesivir

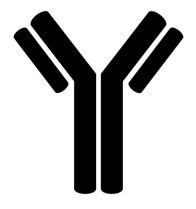
- PINETREE trial: High-risk symptomatic outpatients ≤ 7 days of symptom onset received 3 days of RDV
- Inclusion: ≥ 60 years old or at least one high risk factor
- Exclusion: Vaccinated, Requiring O₂ or hospitalization
- 562 patient enrolled; Mean age 50, median sx duration 5 days; 62% DM2, 55% Obesity, 58% HTN, 4% immune compromised
- Primary outcome: Risk of hospitalization or death due to COVID-19 was 87% lower in RDV group
- Similar rate of ADEs in RDV and Placebo groups

Outcome	RDV group	Placebo group	P-value
COVID-19 hospitalization or death, day 28	2 (0.7%)	15 (5.3%)	0.008
Any death, day 28	0	0	
Any hospitalization, day 28	5 (1.8%)	18 (6.4%)	

Applying the Evidence: Remdesivir


- Best evidence in patients with severe COVID-19 but not intubated (low flow O_2 > high flow or noninvasive ventilation); no clear benefit in critical disease (mechanical ventilation)
- Compelling data in very early outpatient use but logistically challenging
- Modest clinical benefit, may reduce mortality in those on O₂
- Practical considerations with RDV:
 - Default duration 5 d, might extend in MV/ECMO
 - Monitor LFTs daily, stop for ALT/AST > 10x upper limit of normal
 - Limited data in CKD (GFR < 30), however, can be used if benefit outweighs risk1
 - FDA-approved for COVID-19 hospitalized adults/teens, kids (<12 or <40 kg) via EUA

COVID-19 Oral Antivirals


- Two new EUA oral antivirals:
 Nirmatrelvir/ritonavir (Paxlovid) and Molnupiravir
- Demonstrated reduction in hospitalization in high-risk outpatients (89% for Paxlovid, ~30% for Molnupiravir)
- Approved for outpatient treatment of symptomatic patients with mild to moderate disease within 5 days of symptom onset
- Not approved for hospitalized patients
- Watch many drug-drug interactions with Paxlovid!
- Molnupiravir contraindication in pregnancy or caution in those trying to conceive

Liverpool COVID-19 Drug Interaction Checker

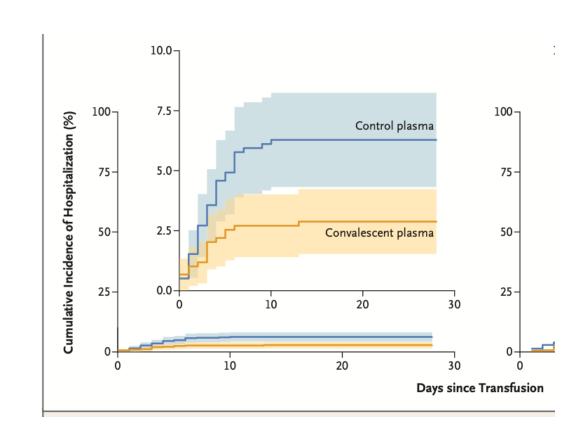
Immune System Mimics

- Agents mimic the immune system's response to SARS-CoV-2
- Likely work best early prior to body's own immune response or as prophylaxis
- Example Agents
 - SARS-CoV-2 Monoclonal Antibodies
 - Convalescent Plasma

SARS-CoV-2 Monoclonal Ab

- 4 Monoclonal Ab with EUA for mild to moderate COVID-19 in high-risk outpatients < 7 days from symptom onset
- NOT currently approved for patients hospitalized due to COVID-19 (but can be used if hospitalized for non-COVID-19 and meets EUA criteria)

EUA Mab	Clinical Efficacy	Predicted Efficacy against variants	Comments
Bamlanivimab/ etesevimab	70% RRR in hospitalization or death (2% vs. 7%)	Significant reduction for Delta, Gamma, and Omicron	No longer in use due to Omicron
Casirivimab/imdevimab	71% RRR in hospitalization or death (1.3% vs. 4.6%)	Significant reduction for Omicron	No longer in use due to Omicron
Sotrovimab	85% RRR in hospitalization or death (1% vs. 7%)	Significant reduction for Omicron BA.2 subvariant	Recommended by NIH (Alla); distribution paused in some states
Bebtelovimab	More limited clinical efficacy data from phase 2 study	Retains <i>in vitro</i> activity for circulating Omicron variants	Recommended by NIH if others not available (CIII)


SARS-CoV-2 Mab Prophylaxis: Evusheld

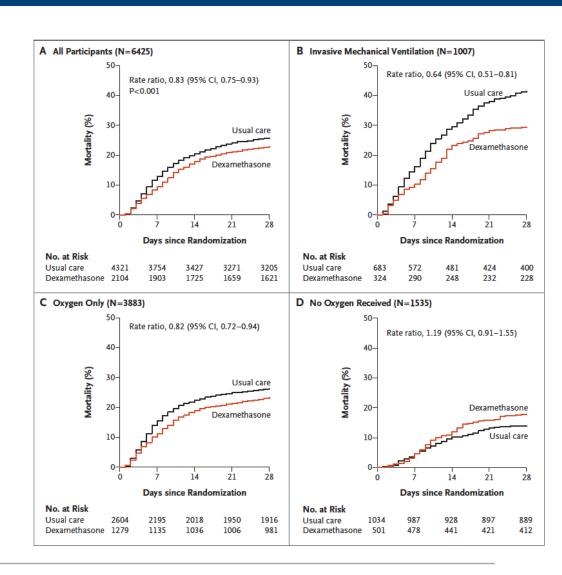
- Two long-acting Mab (tixagevimab/cligavimab) with extended half-life up to 12 months protection
- EUA for prophylaxis in moderate/severe immunocompromised pts or those unable to be vaccinated
- PROVENT phase 3 prophylaxis trial: 5,197 participants (2:1 randomization), 75% with high-risk comorbidities, single 300 mg IM injection or saline IM placebo
- Recommended dose increased to 600 mg due to Omicron variants

	AZD 7442 Arm	Placebo Arm	Relative Risk Reduction
Symptomatic PCR + disease	8	17	77% (95% CI: 46%-90%)
Severe disease	0	3	
Death	0	2	

Convalescent Plasma: Comeback Kid?

- RCT of high-titer convalescent plasma in outpatient COVID-19 ≤ 8 days from sx onset
- Pre-Omicron era, 1225 enrolled, > 80% unvaccinated
- Primary outcome: 54% RRR in risk of hospitalization with CP (2.9% vs 6.3%; p=0.005)
- Take-home message: Early, high-titer CP may have a role in outpatient COVID-19, particularly in unvaccinated or immunocompromised

Immunomodulators


- Agents dampen the host immune and inflammatory response to SARS-CoV-2
- Likely work best during host inflammatory phase or possibly in combination with antiviral agents
- Example Agents
 - Corticosteroids
 - Cytokine Inhibitors (e.g. IL-6)
 - JAK Pathway Inhibitors (e.g. baricitinib)

Corticosteroids: RECOVERY Trial

- Open-label, adaptive COVID-19 trial in UK
- Dexamethasone 6 mg daily up to 10d

(N=2104) vs. Usual Care (N=4321)

- 28 day Mortality Rate Ratios:
 - Overall: 0.83
 - On MV: 0.64 (Absolute RR $\approx 12\%$)
 - On O₂: 0.82 (Absolute RR \cong 3%)
 - No O₂: 1.19

Applying the Evidence: Corticosteroids

- Strongest data for critically ill COVID-19
 - Give to all unless clear contraindication; optimal dosing less clear
 - Dexamethasone or IV methylprednisolone (2 mg/kg x 5 days, then taper for total of 10 days)
- Strong data for severe COVID-19 on O₂ (RECOVERY)
 - Give to most unless clear contraindication, usually combined with antiviral
- Do NOT use systemic steroids in those who are outpatient or not on O₂
- Small trial supporting inhaled budesonide 800 mg BID in symptomatic outpatients

Applying the Evidence: IL-6 and JAK inhibition

- Both IL-6 receptor and JAK inhibitors have shown mortality benefit in addition to standard of care (corticosteroids +/- remdesivir)
- How to use and who is the right patient population?
- <u>IL-6R antagonists</u>: Tocilizumab, weight-based dosing, single dose
- Use in those progressing to higher O_2 or intubation (< 24h) despite steroids, especially if CRP > 75
- JAK Inhibitors (baricitinib): 4 mg PO daily up to 14d, dose reduce in CKD
- Can use either as alternative if steroids contraindicated OR in addition to steroids in those progressing to higher O₂ or mechanical ventilation

COVID-19 Anticoagulation (NIH Guidelines)

Patient Population	Therapeutic Dose Anticoagulation (LMWH preferred)	Prophylactic Dose Anticoagulation
Clinically suspected or diagnosed VTE/PE (AI)	✓	
Hospitalized nonpregnant patients on low- flow O ₂ AND D-Dimer > ULN*(Clla)	✓	
Hospitalized patients requiring ICU level care or high-flow O ₂ /NIV (AI)		✓
All other hospitalized patients (including all pregnant patients) (BIII)		√

^{*} Contraindications to therapeutic anticoagulation include: Platelets < 50k, Hgb < 8 mg/dL, Need for dual antiplatelet, ED visit or hospitalization for major bleeding in last 30 days, Inherited or known history of bleeding disorder.

What is NOT currently recommended

- Routine bacterial antibiotics
- Hydroxychloroquine
- HIV protease inhibitors
- Ivermectin
- Colchicine
- IVIG
- Azithromycin (for COVID-19)
- Zinc, Vitamin C, Vitamin D (for COVID-19)

Case #1

■ 45 year old male with PMHx of NYHA III CHF, obesity, DM type 2 contacts the clinic with 2 days of fevers, cough, fatigue. His home pulsox is reading 96% on room air. He received 2 doses of Moderna vaccine in May. He had a prolonged exposure to a family friend last week who is now COVID+. What do you recommend?

- Immediate COVID-19 rapid Ag +/- PCR testing, Isolation
- Counsel and strongly recommend one of the following:
 - Monoclonal Ab treatment (Bebtelovimab or Sotrovimab)
 - Oral nirmatrelvir/ritonavir (Paxlovid)
 - Outpatient IV Remdesivir x 3 days

Case #1: Outpatient COVID-19

- Key Pearls: Prioritize early outpt therapy in high risk patients; Every high risk patient should have Mab action plan
- Selling Point: 70-85% reduction in risk of hospitalization or death
- Oral nirmatrelvir/ritonavir also a good option if within
 5 days of sxs and no drug-drug interactions
- IV Remdesivir x 3 days also a choice but outpatient logistics more challenging

Mab EUA Criteria:

Sx onset < 7 days

Not hospitalized <u>due to COVID</u>

No new or ↑ oxygen

"High risk for progression"

Mab High Risk Criteria:

Age > 65
BMI > 25
DM, CKD, Chronic heart/lung dz
Immunosuppressed
Others....

Case #2

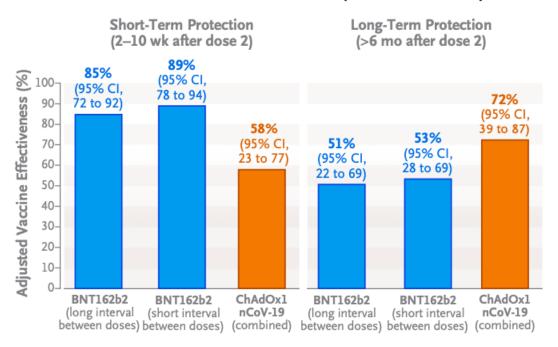
- 63 year old male with PMHx of obesity, COPD, HTN admitted with 6 days of fevers, HA, rhinorrhea, SOB. He was unvaccinated. COVID-19 PCR positive on admission, CXR shows bilateral interstitial infiltrates. O₂ sat 94% on 3L NC. LFTs 2x ULN. CRP 25 mg/L. What do you recommend?
- Dexamethasone 6 mg daily up to 10 days plus IV Remdesivir x 5 days
- At least ppx anticoagulation, possibly therapeutic
- Trend O₂ sats, LFTs, D-dimer, CRP
- No antibacterial antibiotics; Awake proning

Case #2: Severe COVID-19 on low flow O2

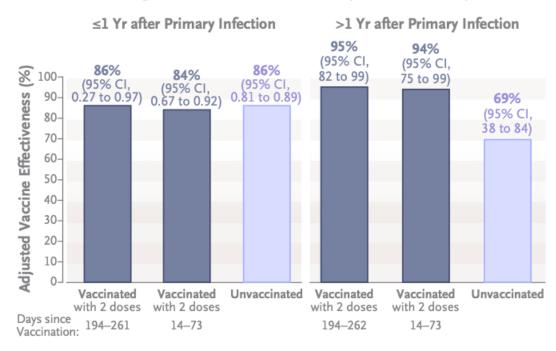
Key Pearls:

- Dexamethasone and Remdesivir mainstay of Rx
- Secondary bacterial infection rare, no abx needed in most cases
- Assess anticoagulation level based on bleeding risk
- Awake proning may benefit, no cost intervention
- Trend O2, LFTs, D-dimer and CRP
- If O₂ needs progressing rapidly, can consider adding baricitinib or tocilizumab
- Cannot use Mab via EUA but can consider compassionate use if Ab negative

Outline


- COVID-19 Epidemiology and Emerging Variants
- COVID-19 Management and Prevention Updates
- COVID-19 Vaccination Updates

Vaccine and Infection-induced Immunity


Prospective UK cohort of > 35,000 HCWs from Dec 2020-Sept 2021 (pre-Omicron)

Vaccine Effectiveness over Time in Previously Uninfected Participants

Robust vaccine immune protection against infection (esp. mRNA) that wanes > 6 months

Protection against Reinfection in Previously Infected Participants

Robust infection-induced immune protection that is further boosted with vaccination

CDC Vaccine Recs: Non-Immunocompromised

COVID-19 Vaccination Schedule*

Vaccine	0 monti	1 month	2 month	3 month	4 month	5 month	6 month	7 month	8 month	9 month	10 month	11 month
Pfizer-BioNTech (ages 5-11 years)	1 st Dose	2 nd Dose (3 weeks after 1 st dose)										
Pfizer-BioNTech (ages 12 years and older)	1st Dose	2 nd Dose ¹ (3–8 weeks after 1 st dose)				oster Dose ² least 5 months after 2 ⁿ	^{id} dose)			Booster Dose ³ e footnote)	
Moderna (ages 18 years and older)	1st Dose	2 nd Dose ¹ (4–8 weeks after 1 ^s	[*] dose)				Booster Dose ² (at least 5 months a	ifter 2 nd dose)			2 nd Booster Dose (See footnote)	
Janssen (ages 18 years and older)	1st Dose		Booster Dose ² (at least 2 months after 1 st dose)				2 nd Booster Dose (See footnote)					

Note: Timeline is approximate. Intervals of 3 months or fewer are converted into weeks per the formula "1 month = 4 weeks." Intervals of 4 months or more are converted into calendar months.

2nd Booster Dose now an option for those ≥ 50 years old

- Greatest likely benefit in those ≥ 65 years old or with chronic medical conditions
- Those with recent Omicron infection can likely delay booster shot

CDC Vaccine Recs: Immunocompromised

COVID-19 Vaccination Schedule

For Those who are Moderately or Severely Immunocompromised

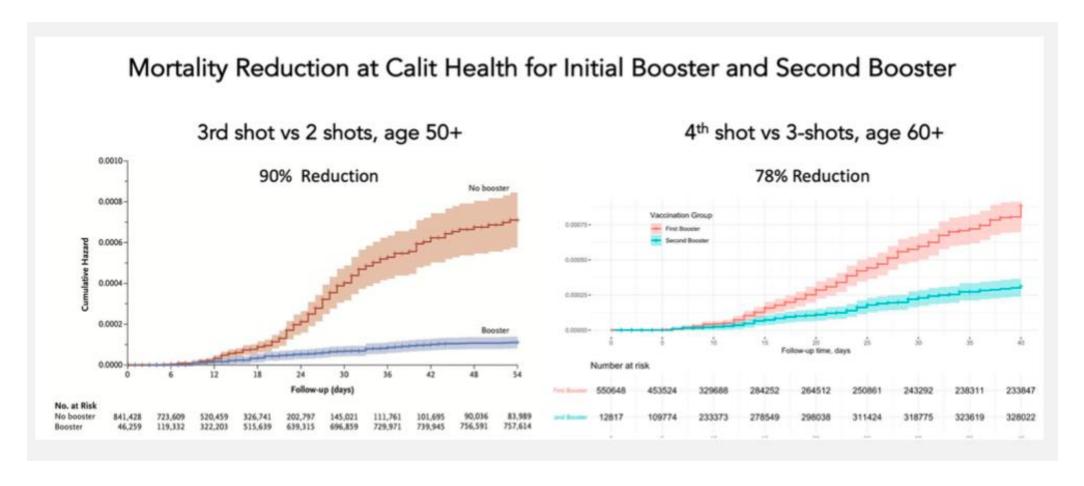
Vaccine	0 mont	h 1 mont	2 month	3 month	4 month	5 month	6 month	7 month	8 month	9 month
Pfizer-BioNTech (ages 5-11 years)	1st Dose	2 nd Dose (3 weeks after 1 st dose)	3 rd Dose (At least 4 weeks after 2 nd dose)							
Pfizer-BioNTech (ages 12 years and older)	1st Dose	2 nd Dose (3 weeks after 1 st dose)	3 rd Dose (At least 4 weeks after 2 nd dose)			poster Dose ¹ least 3 months after 3	3 rd dose)		_	Booster Dose ³ e footnote)
Moderna (ages 18 years and older)	1st Dose	2 nd Dose (4 weeks after 1 ²² dose)	3 rd Dose (At least 4 weeks after 2 nd dose)			Booster Dose¹ (at least 3 months a	nfter 3 rd dose)			2 nd Booster Dose (See footnote)
Janssen (ages 18 years and older)	1st Dose	an mRNA CO	al) Dose ² using VID-19 Vaccine ks after 1 st dose)	Booster Dose ¹ (at least 2 months after additional dose	e)			2 nd Booster Dose ³ (See footnote)		

Note: Timeline is approximate. Intervals of 3 months or fewer are converted into weeks per the formula "1 month = 4 weeks." Intervals of 4 months or more are converted into calendar months.

Conclusions

- Cases and hospitalizations are currently at nadir after Omicron surge but likely to see a new wave in the summer due to new variants, waning immunity
- Outpatient therapies focus on early initiation of oral antivirals, Mabs, or short course IV Remdesivir (if available)
- Cornerstone of inpatient treatment for those with severe disease (on O2)
 remains IV remdesivir plus steroids (+/- other immunomodulators)
- Vaccine recommendations on boosters continue to evolve with changing science and new variants

Questions?



Extra Slides

4th Dose COVID-19 Booster: Israel Clalit Health

Pre-print retrospective cohort of > 560k patients > 60 yo in large Israeli Health System

TOGETHER Ivermectin COVID-19 Trial

Largest and most rigorous
RCT of early ivermectin
treatment in COVID-19
showed no benefit in reducing
disease progression

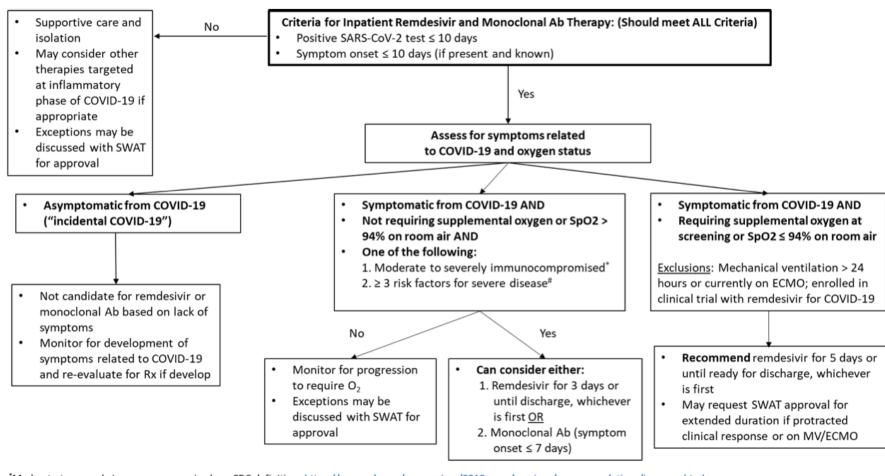
METHODS

We conducted a double-blind, randomized, placebo-controlled, adaptive platform trial involving symptomatic SARS-CoV-2–positive adults recruited from 12 public health clinics in Brazil. Patients who had had symptoms of Covid-19 for up to 7 days and had at least one risk factor for disease progression were randomly assigned to receive ivermectin (400 μ g per kilogram of body weight) once daily for 3 days or placebo. (The trial also involved other interventions that are not reported here.) The primary composite outcome was hospitalization due to Covid-19 within 28 days after randomization or an emergency department visit due to clinical worsening of Covid-19 (defined as the participant remaining under observation for >6 hours) within 28 days after randomization.

RESULTS

A total of 3515 patients were randomly assigned to receive ivermectin (679 patients), placebo (679), or another intervention (2157). Overall, 100 patients (14.7%) in the ivermectin group had a primary-outcome event, as compared with 111 (16.3%) in the placebo group (relative risk, 0.90; 95% Bayesian credible interval, 0.70 to 1.16). Of the 211 primary-outcome events, 171 (81.0%) were hospital admissions. Findings were similar to the primary analysis in a modified intention-to-treat analysis that included only patients who received at least one dose of ivermectin or placebo (relative risk, 0.89; 95% Bayesian credible interval, 0.69 to 1.15) and in a per-protocol analysis that included only patients who reported 100% adherence to the assigned regimen (relative risk, 0.94; 95% Bayesian credible interval, 0.67 to 1.35). There were no significant effects of ivermectin use on secondary outcomes or adverse events.

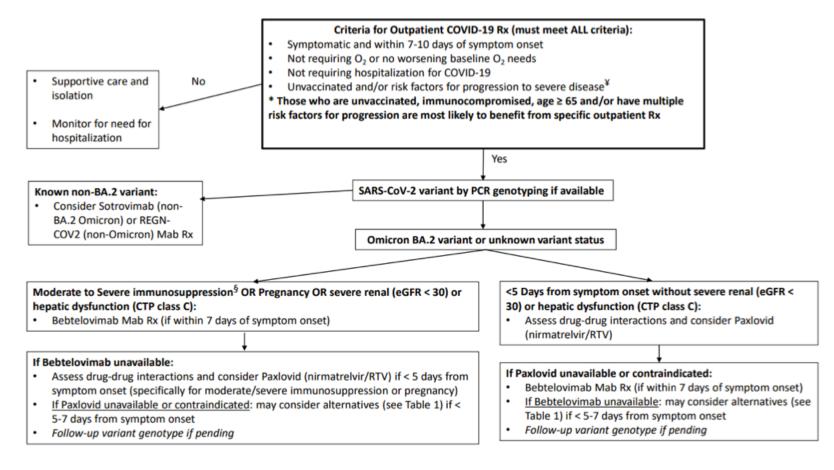
CONCLUSIONS


Treatment with ivermectin did not result in a lower incidence of medical admission to a hospital due to progression of Covid-19 or of prolonged emergency department observation among outpatients with an early diagnosis of Covid-19. (Funded by

FastGrants and the Rainwater Charitable Foundation; TOGETHER ClinicalTrials.gov

UTSW Inpatient RDV and Mab Algorithm

Figure 1: Algorithm for Inpatient Use of Remdesivir and Monoclonal Antibodies



^{*}Moderate to severely immunocompromised per CDC definitions https://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations/immuno.html

[#]Risk factors for severe disease: Unvaccinated, Age ≥ 65, DM2, Obesity (BMI > 30), and Chronic cardiac, pulmonary, renal, neurologic or liver disease

UTSW Outpatient Algorithm

Figure 1. Recommended Treatment Approach for Non-Hospitalized Patients with COVID-19

^{*}Risk factors for progressing to severe disease -- https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html

[§] Moderate to severe immunosuppression -- https://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations/immuno.html