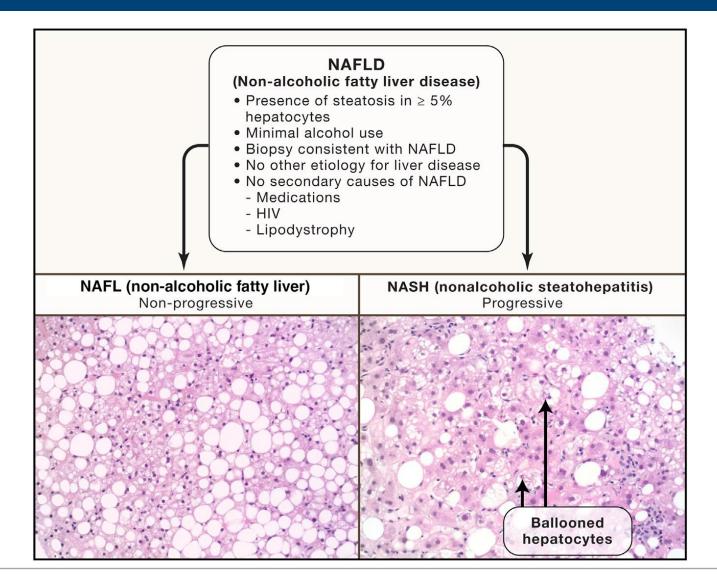
Update on Liver Disease Conference 2022

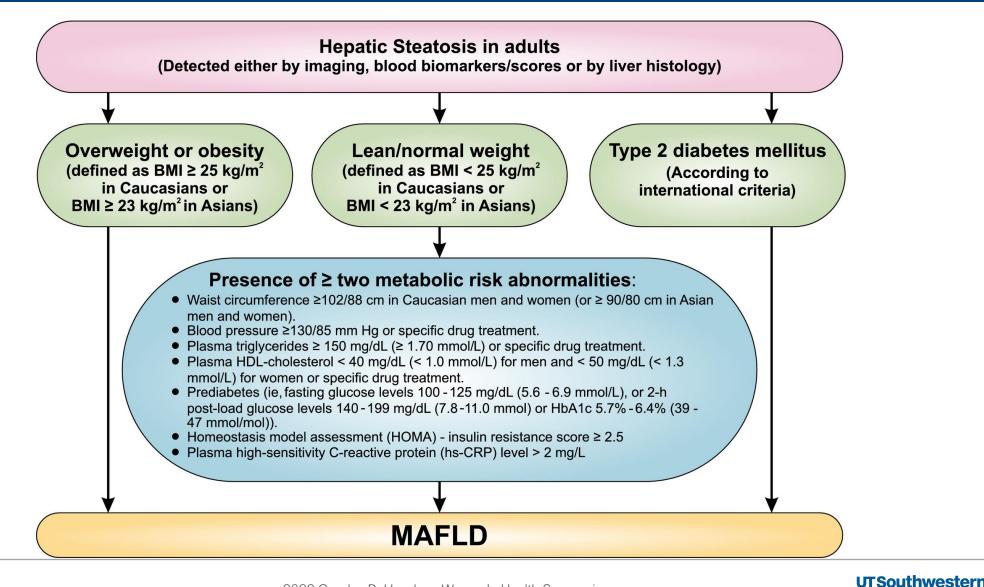
Emerging Topics in NAFLD

Maddie J. Kubiliun, M.D., M.P.H. Assistant Professor, Internal Medicine Division of Digestive and Liver Diseases

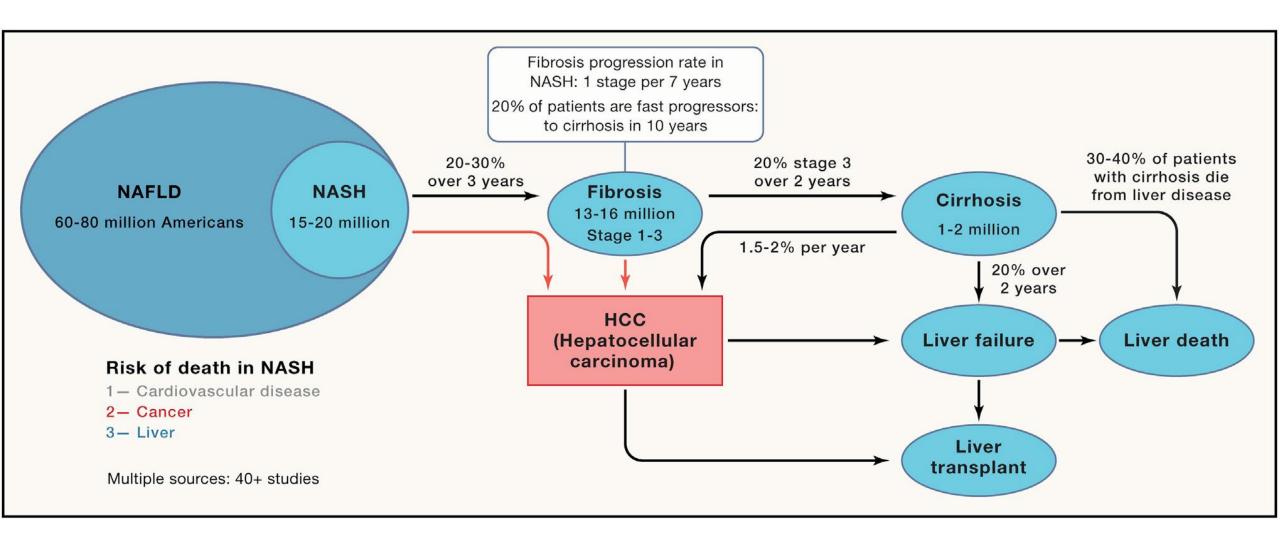

Talk outline

- Case presentation
- Definitions
- Natural history of NAFLD
- Disease initiation and modifiers of disease progression
- How/who to evaluate for NAFLD
- Risk stratification in NAFLD
- NAFLD management
 - Lifestyle Interventions
 - Role of Bariatrics
 - Nutrition & Pharmacotherapy

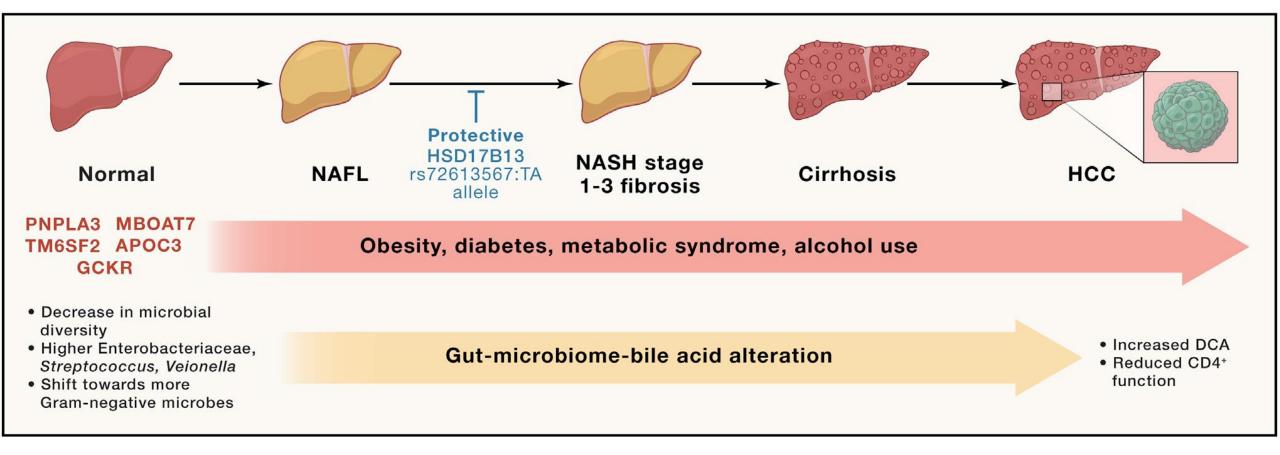
Patient Presentation – J.P.


- 65-year-old man, referred for elevated aminotransferases
 - Endorses RUQ discomfort; 20 lb weight gain over two years
 - Mostly "normal" liver chemistries over previous 5 years, mild intermittent elevations; ALT 60, AST 55, normal ALP and TB
- PMHx: obesity (210 lbs, BMI 31), diabetes (HbA1c 7.2), hypertension
- FHx: mother with cryptogenic cirrhosis
- SHx: from Mexico, rare alcohol consumption
- Medications: Metformin, Lisinopril
- Exam: central adiposity (waist circumference 104 cm)

What is Non-Alcoholic Fatty Liver Disease?



Shift in Paradigm: NAFLD to MAFLD



Medical Center

Natural History of NAFLD

NAFLD Initiation and Progression

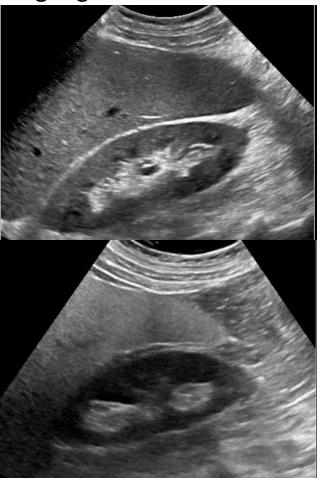
How to Evaluate for NAFLD

Detailed medical history: alcohol, medications, secondary causes of steatosis

Medications

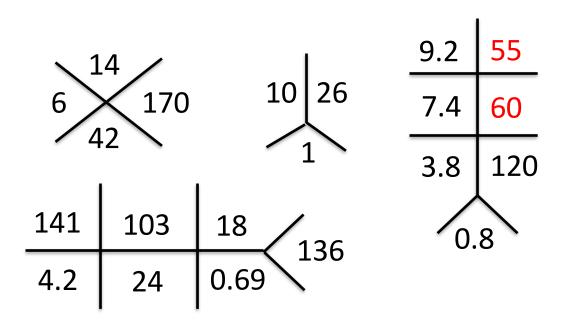
- Amiodarone
- Methotrexate
- Tamoxifen
- Corticosteroids
- Valproate
- Antiretrovirals

Additional etiologies


- HCV and Wilson's Disease
- Lipodystrophy/HIV
- Starvation/Malnutrition
- Post Whipple
- Parenteral nutrition
- Inborn errors of metabolism

How to Evaluate for NAFLD

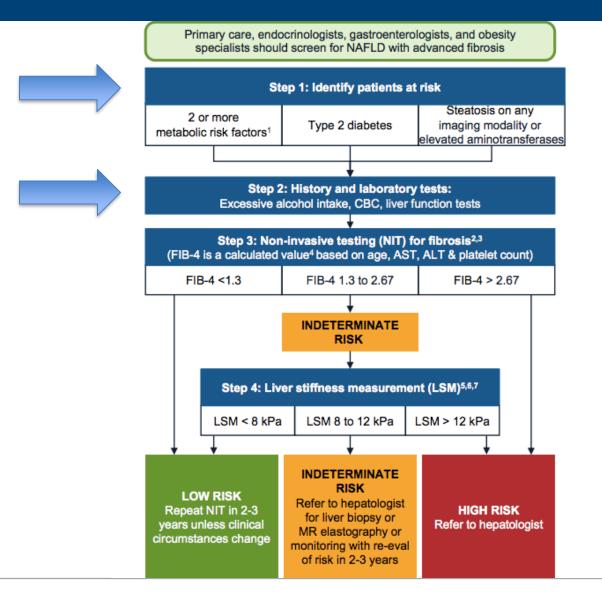
- Laboratory evaluation:
 - Viral hepatitis
 serologies
 - Ferritin*
 - ANA*, ASMA*, IgG
 - A1AT
 - Ceruloplasmin


- CBC, CMP, INR
- HIV Ab
- Lipid panel
- HbA1c
- Thyroid function

Imaging: Abdominal ultrasound

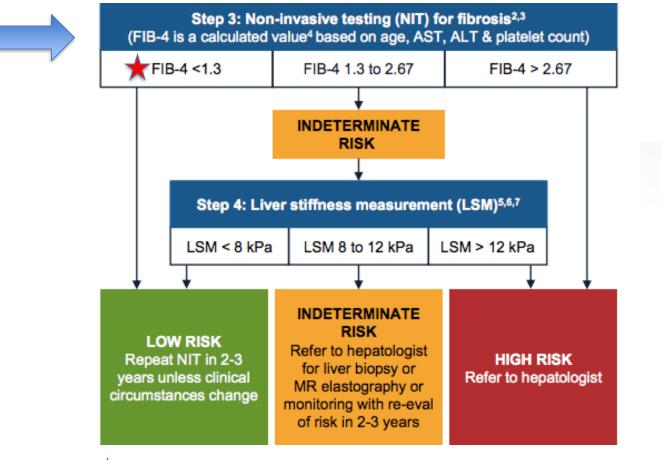
UT Southwestern Medical Center

Back to our Patient, J.P.

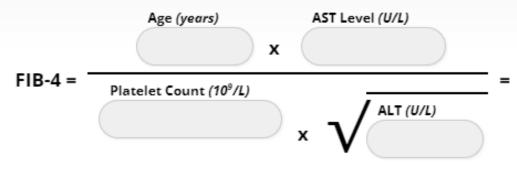


Labs otherwise notable for:

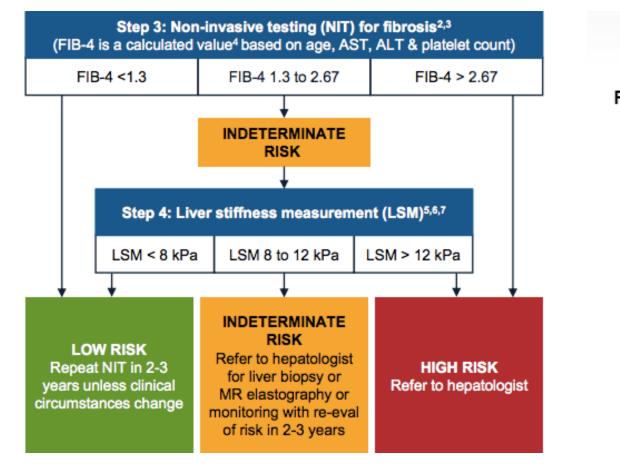
ANA + 1:80

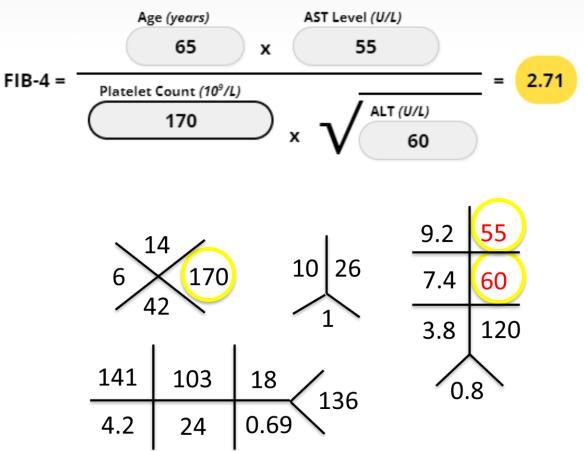

<u>Ultrasound Liver:</u>

- Severe increase in hepatic
 echogenicity with typical regions
 of focal sparing
- The contour appears smooth
- Spleen size 9.5 x 9.4 x 3.5 cm
- Impression: Hepatic steatosis. No evidence of portal hypertension.

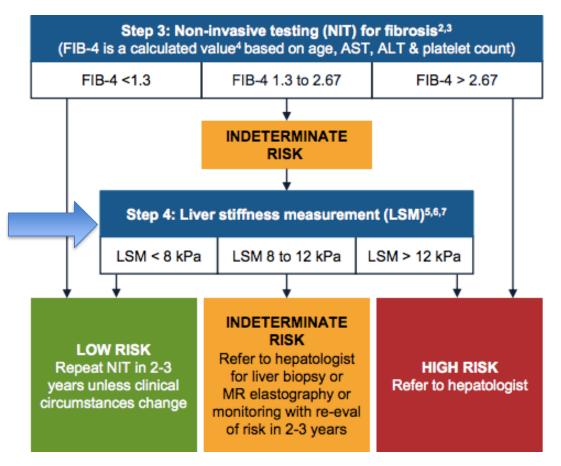


¹¹ Kanwal et al, Gastroenterology, 2021.



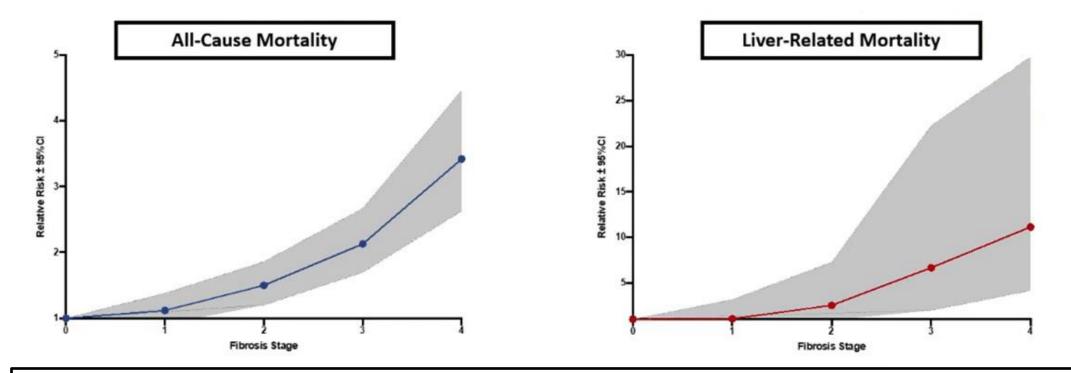


★ For patients 65+, use FIB-4 <2.0 as lower cutoff

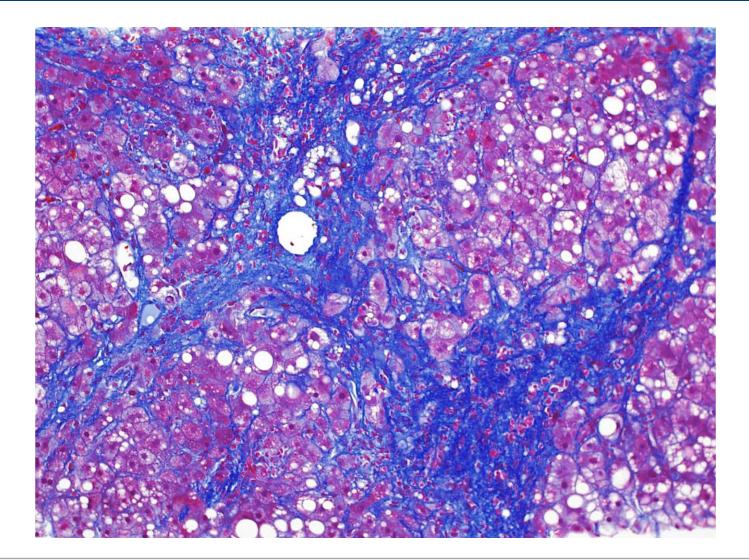


UTSouthwestern

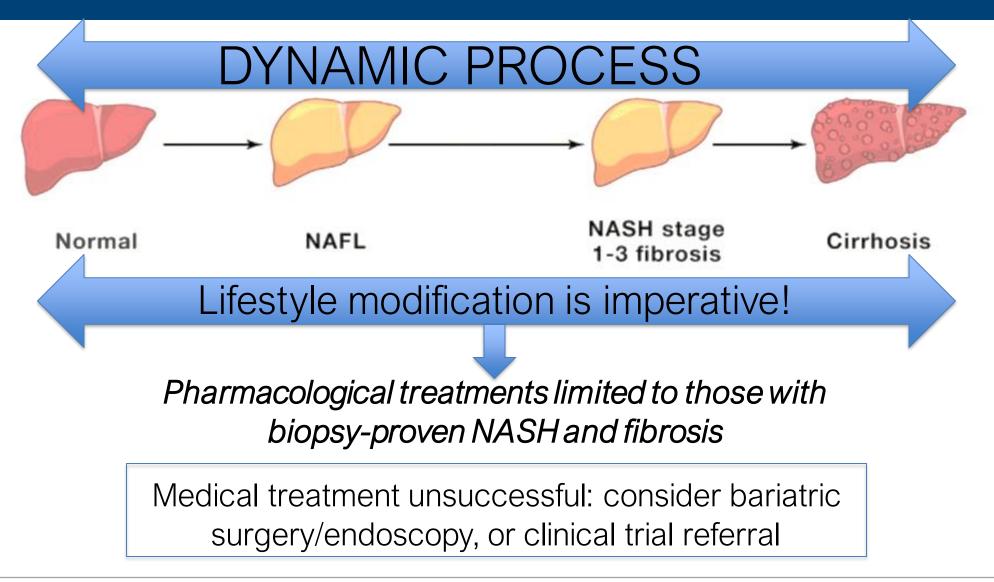
Medical Center


13

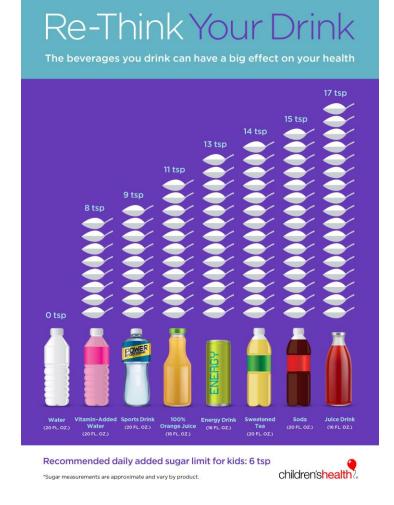
Vibration Controlled Transient Elastography (VCTE)

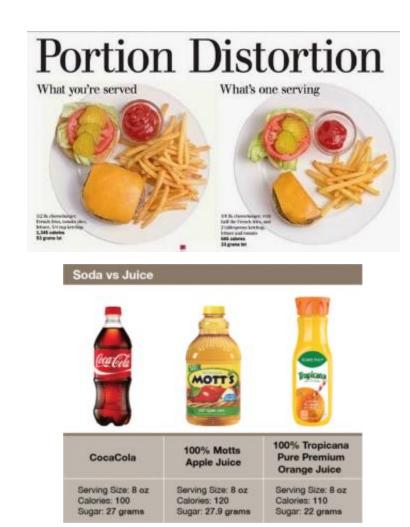

Why Fibrosis Stage Matters

2018 AASLD Practice Guidance: <u>Patients with suspected or known NAFLD</u> and a high risk of NASH (MetS) or advanced fibrosis should be referred for consideration of liver biopsy.


15 Taylor et al, Gastroenterology, 2020. Chalasani et al, Hepatology, 2018.

J.P. - Liver Biopsy





Management Principles of NAFLD

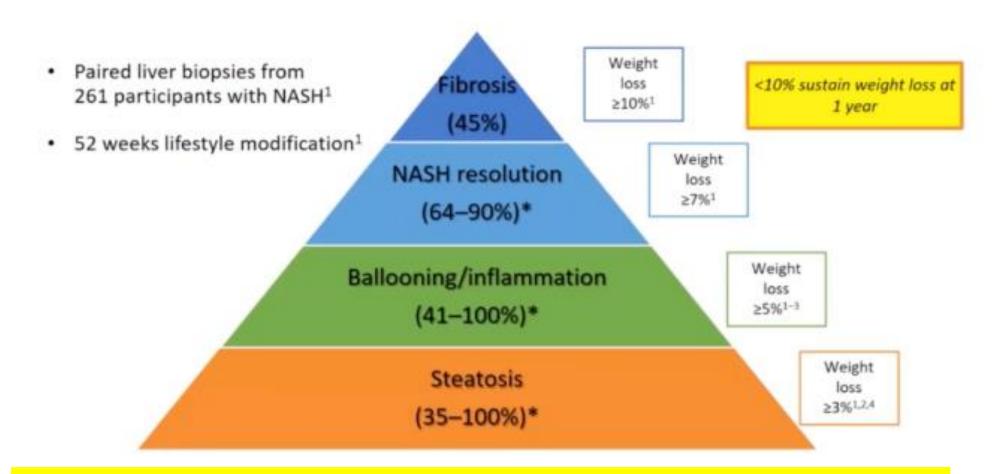
Treatment of Obesity is Foundation of NAFLD Care

UT Southwestern Medical Center

Weight Loss Improves Aminotransferases

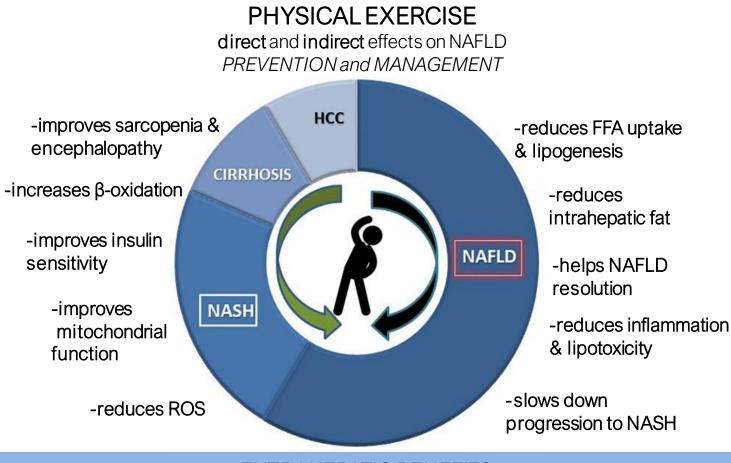
Figure 2. Association Between Weight Loss Intervention (WLI) and Alanine Aminotransferase (ALT)

	More Intensive WLI Less Inte			WLI	Mean Difference	More	e Less	Weight
Source	Mean (SD)	Total	Mean (SD)	Total	in ALT, U/L (95% CI)	Intensive WLI	Intensive WLI	%
Al-Jiffri et al, ³⁷ 2013	Jiffri et al, ³⁷ 2013 -13.6 (1.6)		0.7 (1.7)	50	-14.30 (-14.95 to -13.65)	-		6.4
Promrat et al, ⁴⁵ 2010	-42.4 (23.0)	20	-16.5 (14.2)	10	-25.90 (-39.28 to -12.52)			3.1
Abd EI-Kader et al, ³⁵ 2016	-11.7 (1.3)	50	0.4 (1.1)	50	-12.10 (-12.57 to -11.63)			6.5
Sun et al, ³⁴ 2012	-22.9 (9.2)	674	3.7 (9.2)	332	-26.60 (-27.81 to -25.39)			6.4
Bahmanadabi et al, ³⁰ 2011	-7.5 (10.9)	20	-5.7 (17.6)	20	-1.80 (-10.87 to 7.27)			4.3
Abenavoli et al, ³⁶ 2017	0.5 (7.2)	20	-0.3 (8.9)	10	0.80 (-5.55 to 7.15)	-		5.2
Wong et al, ⁴⁷ 2013	-17.0 (17.7)	77	-7.0 (9.5)	77	-10.00 (-14.49 to -5.51)	-8-		5.8
Armstrong et al, ³⁸ 2016	-26.6 (34.4)	23	-10.2 (35.8)	22	-16.40 (-36.93 to 4.13)			1.9
Asghari et al, ²⁹ 2018	-4.3 (7.5)	30	-7.2 (10.3)	30	-11.50 (-16.06 to -6.94)			5.8
Axley et al, ³⁹ 2018	-12.0 (8.1)	8	-6.0 (10.4)	14	-6.00 (-13.82 to 1.82)		136	4.7
Selezneva et al, ³³ 2014	-4.0 (22.0)	58	-21.3 (11.4)	116	25.30 (19.27 to 31.33)			5.3
Katsagoni et al, ⁴² 2018 (D)	-20.0 (26.1)	21	-2.6 (10.5)	11	-17.40 (-30.17 to -4.63)			3.3
Lim et al, ²⁷ 2018	-35.3 (39.3)	43	-9.6 (23.2)	43	-25.70 (-39.34 to -12.06)			3.1
St George et al, ⁴⁶ 2009 (M)	-19.1 (29.7)	73	-7.3 (18.5)	17	-11.80 (-22.92 to -0.68)			3.7
Katsagoni et al, ⁴² 2018 (D+E)	-22.2 (9.7)	21	-2.6 (10.5)	10	-19.60 (-27.32 to -11.88)			4.8
Zelber-Sagi et al, ⁴⁸ 2006	-30.6 (59.0)	21	-12.7 (26.6)	23	-17.90 (-45.38 to 9.58)			1.2
Harrison et al, ⁴¹ 2009	-55.0 (58.8)	23	-45.0 (32.4)	18	-10.00 (-38.3 to 18.31)			1.1
Cheng et al, ³¹ 2017 (D+E)	-1.5 (4.0)	29	1.5 (3.3)	15	-3.00 (-5.22 to -0.78)			6.3
Dong et al, ³² 2016	-4.7 (8.1)	130	-1.6 (8.5)	130	-3.10 (-5.12 to -1.08)			6.3
St George et al, ⁴⁶ 2009 (L)	-14.9 (35.6)	36	-7.3 (18.5)	17	-7.60 (-22.18 to 6.98)			2.9
Cheng et al, ³¹ 2017 (D)	-4.4 (4.0)	28	1.5 (3.3)	14	-5.90 (-8.18 to -3.62)			6.3
Lee et al, ⁴⁴ 2012	-53.0 (13.3)	8	-27.5 (13.3)	10	-25.50 (-37.86 to -13.14)			3.4
Eckard et al, ⁴⁰ 2013 (MF)	-19.8 (54.9)	9	-4.3 (38.7)	5	-15.50 (-64.87 to 33.87) —			0.4
Khoo et al, ⁴³ 2017	-34.0 (27.0)	12	-42.0 (46.0)	12	8.00 (-22.18 to 38.18)			1.0
Eckard et al, ⁴⁰ 2013 (LF)	-27.5 (27.9)	12	-4.3 (38.7)	6	-23.20 (-57.96 to 11.56)			0.8
Total (95% CI)		1496		1062	-9.81 (-13.12 to -6.50)	\diamond		100.0
Heterogeneity $\tau^2 = 44.17$; $\chi^2_{24} = 44.17$	924.44; P<.0	01; / ² =9	7%					
Test for overall effect: z = 5.81								
					-75	-50 -25	25	50



Weight Loss Improves Hepatic Steatosis

Source	More Intensive WLI		Less Intensive WLI		Standardized Mean Difference in	More	Less	Weight
	Mean (SD)	Total	Mean (SD)	Total	Steatosis (95% CI)	Intensive WLI	Intensive WLI	%
Promrat et al, ⁴⁵ 2010	-1.1 (0.4)	18	-0.3 (0.4)	10	-1.94 (-2.89 to -0.99)			8.1
Abenavoli et al, ³⁶ 2017	-1.0 (0.2)	20	0.1 (0.2)	10	-5.35 (-6.99 to -3.71) —		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6.6
Wong et al, ⁴⁷ 2013	-6.8 (3.1)	77	-2.1 (2.5)	77	-1.66 (-2.03 to -1.29)	-	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9.0
Armstrong et al, ³⁸ 2016	-0.7 (0.8)	23	-0.4 (0.8)	22	-0.37 (-0.96 to 0.22)		-	8.8
Asghari et al, ²⁹ 2018	-0.1 (0.2)	24	0 (0.1)	26	-0.63 (-1.20 to -0.06)			8.8
Zelber-Sagi et al, ⁴⁸ 2006	0.1 (0.3)	11	-0.6 (0.4)	12	1.90 (0.88 to 2.91)		—	8.0
Harrison et al, ⁴¹ 2009	0 (0.2)	23	0 (0.2)	18	0.00 (-0.62 to 0.62)	-		8.7
Cheng et al, ³¹ 2017 (D+E)	-7.6 (3.6)	29	2.8 (2.7)	15	-3.07 (-3.99 to -2.15)		4 3 4 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8.2
Dong et al, ³² 2016	-1.1 (0.4)	130	0 (0.4)	130	-2.74 (-3.08 to -2.40)	-		9.1
Cheng et al, ³¹ 2017 (D)	-5.4 (3.3)	28	2.8 (2.7)	14	-2.58 (-3.45 to -1.72)		4 2 2 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4	8.3
Lee et al, ⁴⁴ 2012	-1.0 (0.3)	8	-1.0 (0.3)	10	0.00 (-0.93 to 0.93)			8.2
Ye et al, ²⁸ 2017	-7.8 (3.1)	14	-1.9 (2.4)	16	-2.09 (-3.00 to -1.18)		2	8.2
Total (95% CI)		405		360	-1.48 (-2.27 to -0.70)	\diamond	2 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	100.0
Heterogeneity $\tau^2 = 1.74$; $\chi^2_{11} =$	190.62; P<.001	L; 1 ² =94%					4 	
Test for overall effect: z = 3.7	0;P<.001				-8	-6 -4 -2 Mean Difference (95	0 2 4	1 4

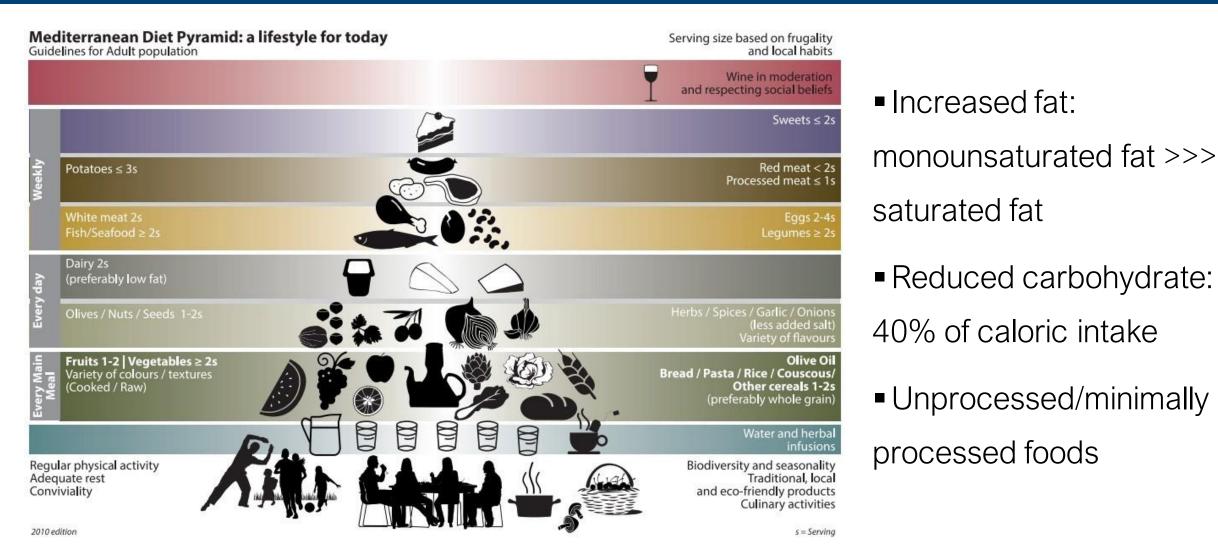

Standardized mean difference was assessed by histologic examination, magnetic resonance imaging, or ultrasonography. D indicates diet group; D+E, diet and exercise group.

Weight Loss and Histologic Improvement

Greater Weight Loss (>7%) = BETTER Histologic Improvement

Exercise in NAFLD

EXTRAHEPATIC BENEFITS


↓visceral fat, whole body fat, ↑muscle strength and bulk, ↑bone density, ↑flexibility, ↓blood pressure, ↑cardiorespiratory fitness, improved mood and sleep patterns, ↑energy levels

 Exercise alone may prevent/reduce hepatic
 steatosis irrespective of
 weight loss

Both aerobic exercise
 and resistance training
 reduce liver fat; tailor to
 patient preferences

UTSouthwestern Medical Center

Dietary Interventions in NAFLD

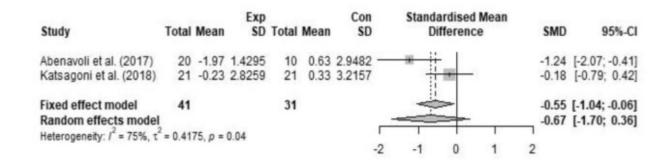
40% of caloric intake

Unprocessed/minimally processed foods

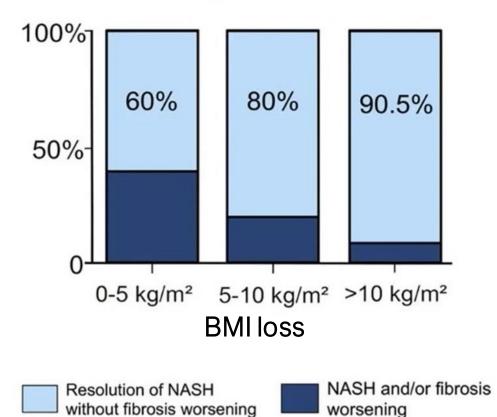
Effects of Mediterranean Diet

- Improvement in markers of insulin

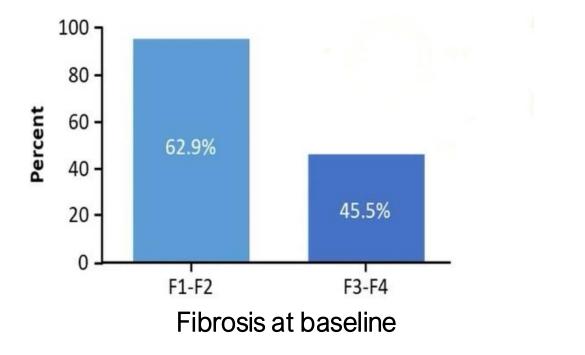
resistance


Reduction in hepatic steatosis and liver stiffness

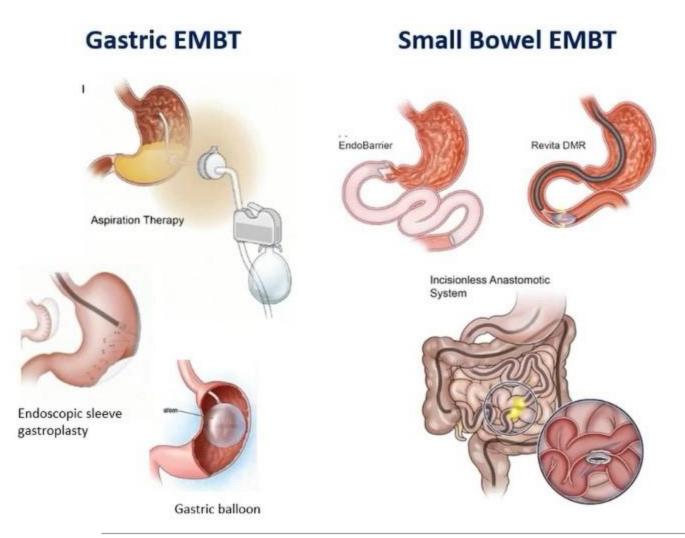
HOMA-IR


Study	Total	Mean	Exp		Mean	Con SD	Standardised Mean Difference	SMD	95%-CI
Study		mean	00	. oran	mean	50	Difference	onic	0011-01
Abenavoli et al. (2017)	20	0.20	1.6370	10	0.67	1.4126		-0.29	[-1.05; 0.47]
Katsagoni et al. (2018)	21	-0.67	1.8213	21	-0.23	1.3876		-0.26	[-0.87; 0.35]
Properzi et al. (2018)	26	-0.28	1.4911	25	0.19	3.4322			[-0.73; 0.37]
Ryan MC et al. (2013)	12	-1.70	1.1764	12	-0.20	1.5013		-1.07	[-1.94; -0.21]
Abenavoli et al. (2015)	10	0.23	2.3379	10	0.73	1.5009		-0.24	[-1.12; 0.64]
Fixed effect model	89			78			\$	-0.34	[-0.65; -0.03]
Random effects model							×		[-0.65; -0.03]
Heterogeneity: $I^{*} = 0\%$, τ^{*}	= 0, p =	0.52					-1.5 -1 -0.5 0 0.5 1 1.5		

Liver stiffness

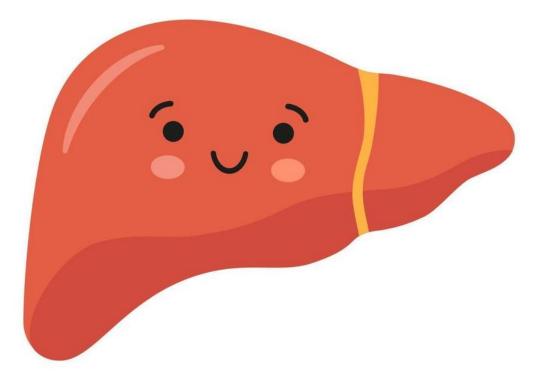


Bariatric Surgery


Resolution of NASH according to weight loss

Fibrosis resolution at 5 years after surgery

Endoscopic & Metabolic Bariatric Therapies


 Gastric EMBT: weight loss dependent improvements in biochemical and histologic NAFLD/NASH

- Small bowel EMBT: improve insulin
 resistance and weight loss dependent
 and independent pathways
- Large randomized trials are needed to define safety and efficacy

What happened to J.P.?

- Switched from Metformin to GLP1-RA with assistance from endocrinology
- In 6 months, lost close to 20 pounds (10% of body weight)
- Improved dysglycemia HbA1c 7.2 \rightarrow 6.7
- Normalization of liver chemistries: AST 25, ALT 30

THANK YOU!

