DEMENTIA UPDATE

Alex Frolov, MD

Assistant Professor of Neurology

DISCLOSURES

- Prior consulting for Eisai, Inc, 2022
- Co-investigator in multi-center clinical trials sponsored by Eisai, Biogen

OUTLINE

- Why do we care?
- MCI & Dementia Clinical Diagnosis of AD
- MCI & Dementia Pathological Diagnosis of AD
- MCI & Dementia Clinicopathologic Diagnosis of AD
- How does this impact me?
- A day in the life
- Beyond amyloid & tau

WHY DO WE CARE?

WHY DO WE CARE?

WHY DO WE CARE?

September 28, 2022

LECANEMAB CONFIRMATORY PHASE 3 CLARITY AD STUDY MET PRIMARY ENDPOINT, SHOWING HIGHLY STATISTICALLY SIGNIFICANT REDUCTION OF CLINICAL DECLINE IN LARGE GLOBAL CLINICAL STUDY OF 1,795 PARTICIPANTS WITH EARLY ALZHEIMER'S DISEASE

- ALL KEY SECONDARY ENDPOINTS ALSO MET, DEMONSTRATING HIGHLY STATISTICALLY SIGNIFICANT RESULTS
- PROFILE OF AMYLOID-RELATED IMAGING ABNORMALITIES (ARIA) INCIDENCE WAS WITHIN EXPECTATIONS
- EISAI AIMS TO FILE FOR TRADITIONAL APPROVAL IN THE U.S., AND TO SUBMIT MARKETING
 AUTHORIZATION APPLICATIONS IN JAPAN AND EUROPE BY THE END OF EISAI FY2022,
 WHICH ENDS ON MARCH 31, 2023

Year	Drug	Company	Mechanism of action	Target	Patient population	Outcome	Observations
2007	Tramiprosate	Neurochem	Unclear; may interact with Aβ oligomers	Soluble Aβ/Aβ oligomers	Mild to moderate AD	Lack of efficacy	_
2009	Tarenflurbil	Myriad Genetics/ Lundbeck	γ-Secretase modulator	Soluble Aβ	Mild AD	Lack of efficacy	Unlikely to have achieved adequate target engagement in the brain
2011	Semagacestat	Eli Lilly	γ-Secretase inhibitor	Soluble Aβ	Mild to moderate AD	Toxicity and lack of efficacy	Increases cognitive decline/no lowering of brain amyloid
2012	Bapineuzumab	Elan/Pfizer/ Johnson & Johnson	Anti-Aβ mAb	Soluble Aβ and plaque	Mild to moderate AD	Lack of efficacy	No significant removal of amyloid
2013	Gammagard	Baxter	Unclear; IVIG may bind soluble Aβ	Soluble Aβ	Mild to moderate AD	Lack of efficacy	_
2013	Solanezumab	Eli Lilly	Anti-Aβ mAb	Soluble Aβ	Mild to moderate AD	Lack of efficacy	No removal of amyloid
2016	Gantenerumab	Hoffman La Roche	Anti-Aβ mAb	Plaque	Mild AD	Lack of efficacy	Converted into an open-label study
2016	Solanezumab	Eli Lilly	Anti-Aβ mAb	Soluble Aβ	Mild AD	Lack of efficacy	No removal of amyloid
2016	Solanezumab	Eli Lilly	Anti-Aβ mAb	Soluble Aß	Prodromal AD	Trial halted	-
2016	Verubecestat	Merck	BACE inhibitor	Soluble Aβ	Mild to moderate AD	Lack of efficacy	Increases cognitive decline/modest lowering of brain amyloid (~20 CL)

Year	Drug	Company	Mechanism of action	Target	Patient population	Outcome	Observations
2016	Verubecestat	Merck	BACE inhibitor	Soluble Aβ	Mild to moderate AD	Lack of efficacy	Increases cognitive decline/modest lowering of brain amyloid (~20 CL)
2018	Verubecestat	Merck	BACE inhibitor	Soluble Aβ	Prodromal AD	Lack of efficacy	Increases cognitive decline
2018	Atabecestat	Janssen	BACE inhibitor	Soluble Aβ	Asymptomatic at risk of AD	Toxicity	Increases cognitive decline
2018	Lanabecestat	AstraZeneca/Eli Lilly	BACE inhibitor	Soluble Aβ	Early AD	Lack of efficacy	Increases cognitive decline
2018	Lanabecestat	AstraZeneca/Eli Lilly	BACE inhibitor	Soluble Aβ	Mild AD	Lack of efficacy	Increases cognitive decline
2019	Crenezumab	AC Immune/ Hoffman La Roche	Anti-Aβ mAb	Soluble Aβ	Prodromal to mild AD	Lack of efficacy	_
2019	Elenbecestat	Biogen/Eisai	BACE inhibitor	Soluble Aβ	Prodromal to MCI due to AD	Lack of efficacy	Increases cognitive decline
2019	Umibecestat	Amgen/Novartis	BACE inhibitor	Soluble Aβ	Asymptomatic at risk of AD	Lack of efficacy	Increases cognitive decline
2019	Amilomotide	Novartis	Vaccine	Αβ	Asymptomatic at risk of AD	Trial halted	_
2020 + Ga	Aducanumab Intenerumab 20	Biogen/Eisai)22, Lecanemab 20	Anti-Aβ mAb	Plaque	MCI to early dementia	Evidence of efficacy	BLA given accelerated approval by the FDA but rejected by the CHMP of the EMA

THE AMYLOID HYPOTHESIS

Medical Center

Lancet Neurol 2013; 12: 207–16

Lancet Neurol 2013; 12: 207-16

MCI & DEMENTIA – CLINICOPATHOLOGIC DIAGNOSIS

- SMC, MCI, Dementia
 - Functional labels
 - Agnostic as to pathology

- Alzheimer's disease, FTD, DLB, etc
 - Pathologic diagnoses
 - Can vary from normal to severe dementia

Temporal evolution of criteria and research frameworks for Alzheimer disease

Must meet all 3 criteria:

- 1. Insidious onset (gradually evolve over months to years)
- 2. Progressive worsening of cognition (report/observation)
- **3. Initial/most prominent** cognitive deficit(s) fit one of the following **phenotypes**:

a. Amnestic (75%)

Impairment in learning and recall of recently learned information Evidence of cognitive dysfunction in at least one other domain

b. Non-amnestic

Language presentation (logopenic variant primary progressive aphasia):

Deficits in word-finding and at least I other cognitive domain *Visuospatial presentation* (posterior cortical atrophy):

Deficits in spatial cognition, including object agnosia, impaired face recognition, simultanagnosia, optic ataxia, oculomotor apraxia, and alexia and at least 1 other cognitive domain

Executive presentation

Deficits in impaired reasoning, judgment, and problem solving and at least 1 other cognitive domain

Corticobasal syndrome

Temporal evolution of criteria and research frameworks for Alzheimer disease

ALZHEIMER'S DISEASE PATHOLOGY ATN FRAMEWORK

- A: Biomarkers of fibrillary **Amyloid β deposition**
- T: Biomarkers of tau pathology (neurofibrillary tangles)
- N: Biomarkers of **neurodegeneration or neuronal injury**

AT(N) profiles	Biomarker category		
A-T-(N)-	Normal AD biomarkers		
A+T-(N)-	Alzheimer's pathologic change		
A+T+(N)-	Alzheimer's disease		
A+T+(N)+	Alzheimer's disease	Alzheimer's continuum	
A+T-(N)+	Alzheimer's and concomitant suspected non Alzheimer's pathologic change		
A-T+(N)-	Non-AD pathologic change		
A-T-(N)+	Non-AD pathologic change		
A-T+(N)+	Non-AD pathologic change		

Definition

A: Ab biomarkers determine whether or not an individual is in the Alzheimer's continuum.

T: Pathologic tau biomarkers determine if someone who is in the Alzheimer's continuum has Alzheimer's disease.

Staging severity

(N): Neurodegenerative/neuronal injury biomarkers (C): Cognitive symptoms

A and T indicate specific neuropathologic changes that define Alzheimer's disease, whereas (N) and (C) are not specific to Alzheimer's disease and are therefore placed in parentheses.

ATN: PRACTICAL APPLICATION OF A RESEARCH PARADIGM

Currently available imaging for clinical purposes:

FDG-PET (N)

MRI (N)

Amyloid-PET **(A)**

Research only Tau-PET (T) Axial Coronal

Neurology. 2016 Aug 2;87(5):539-47. UTSouthwestern Medical Center

Temporal evolution of criteria and research frameworks for Alzheimer disease

	NINCDS-ADRDA (1984) ²	IWG (2007) ³	IWG (2010) ⁴	NIA-AA (2011) ^{5,6}	IWG (2014) ⁷	IWG-AA (2016) ⁸	NIA-AA (2018)¹	IWG (2021)
Applicable settings	Research and clinical	Research	Research	Research and clinical	Research	Research	Research	Research and clinical
Clinical requirements	Dementia (memory changes and another cognitive impairment)	Amnestic syndrome of a hippocampal type	Amnestic syndrome of a hippocampal type, posterior cortical variant, logopenic variant, or behavioural-frontal variant	Mild cognitive impairment (amnestic or non-amnestic) or dementia	Amnestic syndrome of a hippocampal type, posterior cortical variant, logopenic variant, or behavioural– frontal variant	None	None	Amnestic variant, posterior cortical atrophy, logopenic variant primary progressive aphasia, behavioural or dysexecutive frontal variant, corticobasal syndrome, semantic and nonfluent variants of primary progressive aphasias*
Biological requirements	None	CSF biomarkers, MRI atrophy, ¹⁸ F-fluorodeoxyglucose PET hypometabolism, amyloid PET positive, or Alzheimer's disease autosomal dominant mutation	Pathophysiological markers: CSF changes (low CSF Aβ42, high phosphorylated tau, or high total tau) or amyloid PET positive	Amyloid β marker (CSF or PET) or marker of degeneration (CSF tau, phosphorylated tau, ¹⁸ F-fluorodeoxyglucose- PET, and T1-weighted MRI)	CSF amyloid β and tau or amyloid PET positive	Amyloid β marker (CSF or PET) and tau marker (CSF or PET)	Amyloid β marker (CSF or PET) and tau marker (CSF or PET)	Amyloid β marker (CSF or PET) and tau marker (CSF or PET)

ADRDA=Alzheimer's Disease and Related Disorders Association (now the Alzheimer's Association) Work Group. IWG=International Working Group criteria. IWG-AA=International Working Group and Alzheimer's Association joint criteria. NIA-AA=US National Institute on Aging and Alzheimer's Association joint criteria. NINCDS=US National Institute of Neurological and Communicative Disorders and Stroke criteria. *Cognitively unimpaired individuals are considered at-risk for Alzheimer's Disease.

Table 1: Details of successive proposed criteria for Alzheimer's disease diagnosis

	Likelihood of Alzheimer's disease as a primary diagnosis	Further investigation
Common Alzheimer's disease aphasia, and posterior cortic		logopenic variant of primary progressive

Amyloid positive, tau positive	Highly probable-established	None required
Amyloid positive, tau unknown	Probable	Consider a tau measure (PET, CSF)
Amyloid positive, tau negative	Probable	Consider an additional tau measure (PET, CSF)
Tau positive, amyloid unknown	Possible	Consider an amyloid measure (PET, CSF)
Tau positive, amyloid negative	Possible	Consider an additional amyloid measure (PET, CSF)
Amyloid negative, tau unknown	Unlikely	Full investigation of cause and consider a tau measure (PET, CSF)*
Amyloid unknown, tau negative	Unlikely	Full investigation of cause and consider an amyloid measure (PET, CSF)*
Amyloid negative, tau negative	Highly unlikely-excluded	Full investigation of cause*†
Amyloid unknown, tau unknown	Non-assessable	Consider tau and amyloid measures (PET, CSF)

Dubois & Villain et al, Lancet Neurology 2021

> N Engl J Med. 2022 Nov 29. doi: 10.1056/NEJMoa2212948. Online ahead of print.

Lecanemab in Early Alzheimer's Disease

```
Christopher H van Dyck <sup>1</sup>, Chad J Swanson <sup>1</sup>, Paul Aisen <sup>1</sup>, Randall J Bateman <sup>1</sup>, Christopher Chen <sup>1</sup>, Michelle Gee <sup>1</sup>, Michio Kanekiyo <sup>1</sup>, David Li <sup>1</sup>, Larisa Reyderman <sup>1</sup>, Sharon Cohen <sup>1</sup>, Lutz Froelich <sup>1</sup>, Sadao Katayama <sup>1</sup>, Marwan Sabbagh <sup>1</sup>, Bruno Vellas <sup>1</sup>, David Watson <sup>1</sup>, Shobha Dhadda <sup>1</sup>, Michael Irizarry <sup>1</sup>, Lynn D Kramer <sup>1</sup>, Takeshi Iwatsubo <sup>1</sup>
```

Affiliations + expand

PMID: 36449413 DOI: 10.1056/NEJMoa2212948

CDR-SB Score

Amyloid Burden on PET

van Dyke et al., NEJM 2022

ARIA‡		
ARIA-E — no. (%)	113 (12.6)	15 (1.7)
Symptomatic ARIA-E — no. (%)∫	25 (2.8)	0
ApoE ε 4 noncarrier — no./total no. (%)	4/278 (1.4)	0/286
ApoE $arepsilon$ 4 carrier — no./total no. (%)	21/620 (3.4)	0/611
ApoE ε4 heterozygote	8/479 (1.7)	0/478
ApoE ε4 homozygote	13/141 (9.2)	0/133
ARIA-E according to ApoE ϵ 4 genotype — no./total no. (%)		
ApoE ε4 noncarrier	15/278 (5.4)	1/286 (0.3)
ApoE ε4 carrier	98/620 (15.8)	14/611 (2.3)
ApoE ε 4 heterozygote	52/479 (10.9)	9/478 (1.9)
ApoE ε 4 homozygote	46/141 (32.6)	5/133 (3.8)
ARIA-H — no. (%)	155 (17.3)	81 (9.0)
Microhemorrhage	126 (14.0)	68 (7.6)
Superficial siderosis	50 (5.6)	21 (2.3)
Macrohemorrhage	5 (0.6)	1 (0.1)
Symptomatic ARIA-H§	6 (0.7)	2 (0.2)
Isolated ARIA-H: no concurrent ARIA-E	80 (8.9)	70 (7.8)

HOW DOES THIS IMPACT ME?

- Clinical syndrome is still important
- Disease modifying therapy is coming (???)
- Biomarker-based diagnosis will likely become standard of care

- Four questions
 - Is it neurodegenerative?
 - If yes, what is the underlying pathology?
 - Are there behavioral symptoms in need of treatment?
 - Are there appropriate research studies?

- Is it neurodegenerative?
 - History, history, history
 - Brain MRI, helpful or no?
 - FDG-PET?

- What is the underlying pathology?
 - CSF AD biomarkers just do it!
 - Amyloid PET
 - Tau PET

Sample CSF AD result

Athena

	Component	
	Ref Range & Units	
×	P-Tau/Abeta42	0.076 ^
	<=0.023 ratio	
*	Abeta42	366∨
	>1026 pg/mL	
<u> </u>	Total-Tau	254 ^
	<=238 pg/mL	
<u> </u>	Phospho-Tau(181P)	27.7^
	<=21.7 pg/mL	

Mayo

ALZHEIMER AD IN- SEE COMMENTS TERPRETATION

abnormal amyloid PET.

Comment: The elevated p-Tau/Abeta42 ratio is consistent with the presence of pathological changes associated with Alzheimer's disease.

The p-Tau/Abeta42 ratio provides better concordance with amyloid Positron Emission Tomography (PET) imaging when compared to Abeta42, phospho-Tau and total-Tau individually. A cut-off of 0.023 provides optimal balance between NPA (negative % agreement) and PPA (positive % agreement) when compared to amyloid PET results. Α p-Tau/Abeta42 ratio of <=0.023 has a 92% NPA with normal amyloid PET. A ratio of >0.023 has a 92% PPA with

	Component Ref Range & Units	4/15/22 11:02 AM
<u>-</u> ×	P-Tau/Abeta42 <=0.023 ratio	0.076^
<u>-×</u>	Abeta42 > 1026 pg/mL	366 ✓
<u>-×</u>	Total-Tau <=238 pg/mL	254 ^
<u>-</u> ×	Phospho-Tau(181P) <=21.7 pg/mL	27.7^

Mayo

- Are there behavioral symptoms in need of treatment?
 - Treatable now!

• Are there appropriate research studies?

BEYOND AMYLOID

BEYOND AMYLOID & TAU

BEYOND AMYLOID & TAU

- Inflammation
- Infection
 - Viruses
 - Dental flora
- Skin biopsy alpha-synuclein
- Neurofilament light

Han et al., 2021

Zhou et al., 2021

THANK YOU!

