

From Guidelines to General Practice – SGLT2i and GLP-1RA for Cardiovascular and Kidney Disease

Sandeep Das, M.D., M.P.H.

Nicholas Hendren, M.D.

Ildiko Lingvay, M.D., M.P.H., M.S.C.S.

Robert Toto, M.D.

Vlad G. Zaha, M.D., Ph.D.

Disclosures

Sandeep Das, M.D., M.P.H.

Associate Editor, Circulation

Nicholas Hendren, M.D.

None

Ildiko Lingvay, M.D., M.P.H., M.S.C.S.

Grant or Contract: NovoNordisk, Pfizer, Merck, Mylan, Sanofi

Independent Contractor: NovoNordisk, AstraZeneca, BI, Lilly, Valeritas, Intarcia, Mannkind, ADA, Janssen, Intercept, Zealand

Pharma, Bayer, TARGETPharma, Duke CRI

Robert Toto, M.D.

Employment: Reata Pharmaceuticals

Independent Contractor: Amgen, Boehringer-Ingelheim, Bayer, Astra-Zeneca, Quintiles, Quest Diagnostics, MedScape, Relypsa

Vlad G. Zaha, M.D., Ph.D.

Associate Editor, Circulation

Objectives

Sodium Glucose Cotransporter 2 Inhibitors (SGLT2i) and Glucagon-like Peptide 1 Receptor Antagonists (GLP-1RA) in type 2 diabetes, ischemic cardiomyopathy, chronic kidney disease, heart failure

- When to consider
- Why to consider
- Which one to pick (or both), additional benefits
- Treatment consideration
- SGLT2i how to handle side effects, when to stop, "AKI"
- GLP-1RA titration, GI adverse effects

Case 1

Case Presentation DM

Your 58-year-old patient with a history of type 2 diabetes, hypertension, obesity, and hypercholesterolemia and a prior myocardial infarction was admitted recently with pneumonia, but is now asymptomatic and fully recovered. They mentioned a "low" while undergoing physical therapy, but has not had a second episode since.

BP is 122/68, HR 68, BMI 32.2

Medication regimen: glipizide 5 mg, atorvastatin 40 mg, aspirin 81 mg, lisinopril 40 mg

Recent labs: eGFR 78, LDL 68, HbA1c 6.6%

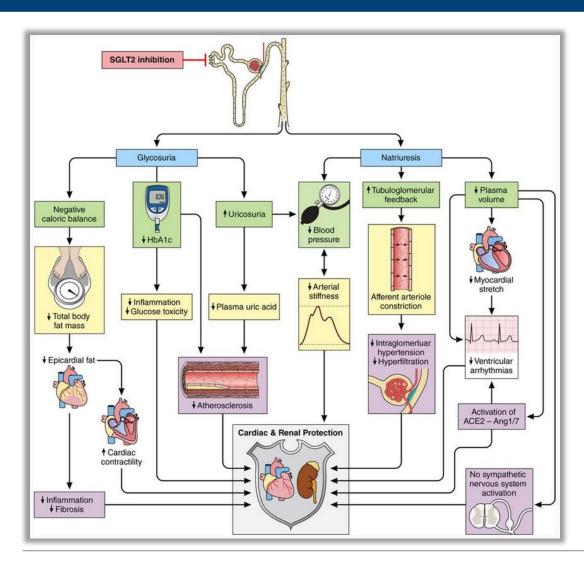
Ejection fraction post-procedure was 55%

Case Presentation DM

Your 58-year-old patient with a history of type 2 diabetes, hypertension, obesity, and hypercholesterolemia and a prior myocardial infarction was admitted recently with pneumonia, but is now asymptomatic and fully recovered. They mentioned a "low" while undergoing physical therapy, but has not had a second episode since.

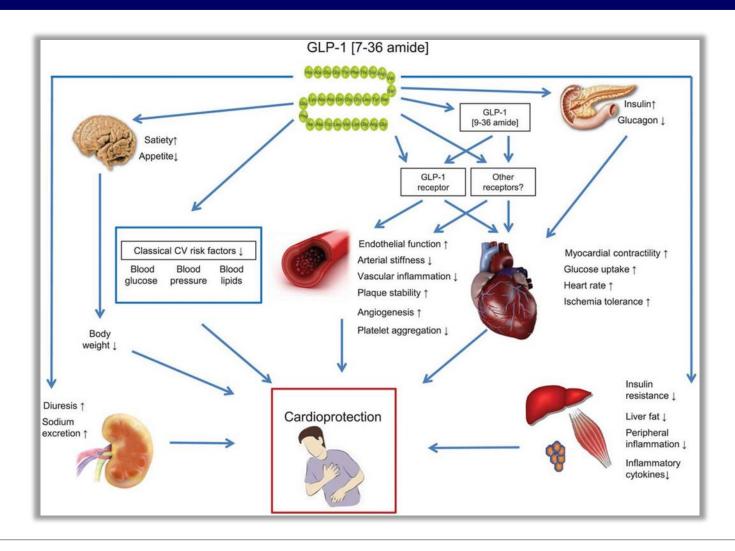
BP is 122/68, HR 68, BMI 32.2

Medication regimen: glipizide 5 mg, atorvastatin 40 mg, aspirin 81 mg, lisinopril 40 mg


Recent labs: eGFR 78, LDL 68, HbA1c 6.6%

Ejection fraction post-procedure was 55%

What changes, if any, would you recommend to this pharmacologic regimen?



SGLT2i

- Block uptake of glucose and sodium in the proximal renal tubule
- Glucosuria
 - Weight loss
 - Glycemic control
 - Uricosuria
- Natriuresis
 - BP control
 - Volume control
 - Decrease glomerular hyperfiltration

GLP-1RA

SGLT2i – Practical Tips

- Recommend holding 3 days before surgery
- Hold if vomiting and unable to keep down food "Sick day" rule
- Avoid in type I diabetes
- Avoid in very low calorie or ketogenic diets

- DKA risk is low but 2-10x higher than placebo
- No difference in UTI rates in EMPAREG, EMPEROR-Reduced, or DAPA-HF trials

GLP-1RA — Practical Tips

- Glycemic management and care coordination
 - Hypoglycemia risk if used with insulin or sulfonylureas
 - Overlap mechanistically with DPP4 inhibitors
- Caution in patients with a history of
 - Diabetic gastroparesis
 - Prior gastric surgery
 - Acute pancreatitis
 - ESRD
- Contraindications
 - Medullary thyroid CA or MEN2
 - Pregnant or breast feeding

SGLT2i/GLP1-RA in Diabetes – Take Home Points

- Both glycemic control (HbA1c) and weight management are co-primary treatment goals for diabetes management
- Metformin no longer recommended as the only first line option
- In patients at high-risk of CV disease, GLP1-RA/SGLT2i should be added irrespective
 of glycemic control (HbA1c)
- Consider de-escalating other agents without proven CV benefits, especially if they carry a risk for hypoglycemia

Case 2

Case Presentation MI

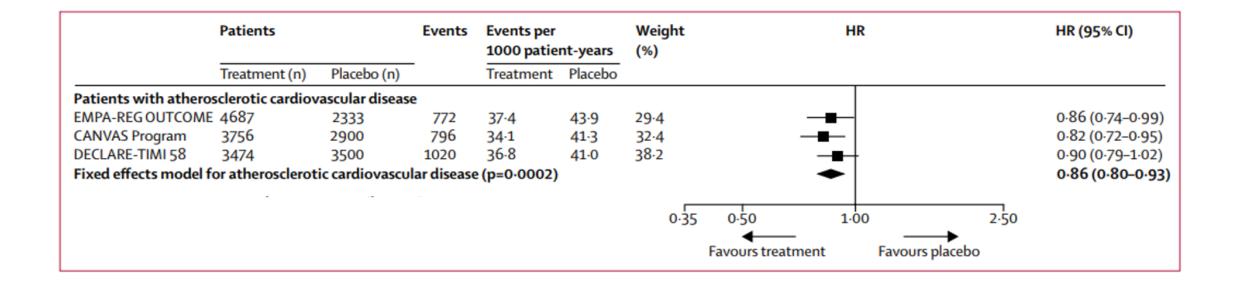
Your 56 year old patient presents for post hospital follow up after a recent myocardial infarction (MI) and percutaneous coronary intervention (PCI).

- Medical Hx: Prior to his MI he "never had any health problems"
- Physical exam: BMI is 31 kg/m², BP is 122/76
- Discharge medications: aspirin 81 mg, prasugrel 10 mg, losartan 50 mg, atorvastatin 80 mg daily; metoprolol tartrate 25 mg, metformin 500 mg twice a day
- Labs during his admission: Cr 1.5, UA protein +, LDL of 155, A1C of 7.8%
- Echocardiogram normal ejection fraction

He wants to do anything possible to avoid having another heart attack.

Case Presentation MI

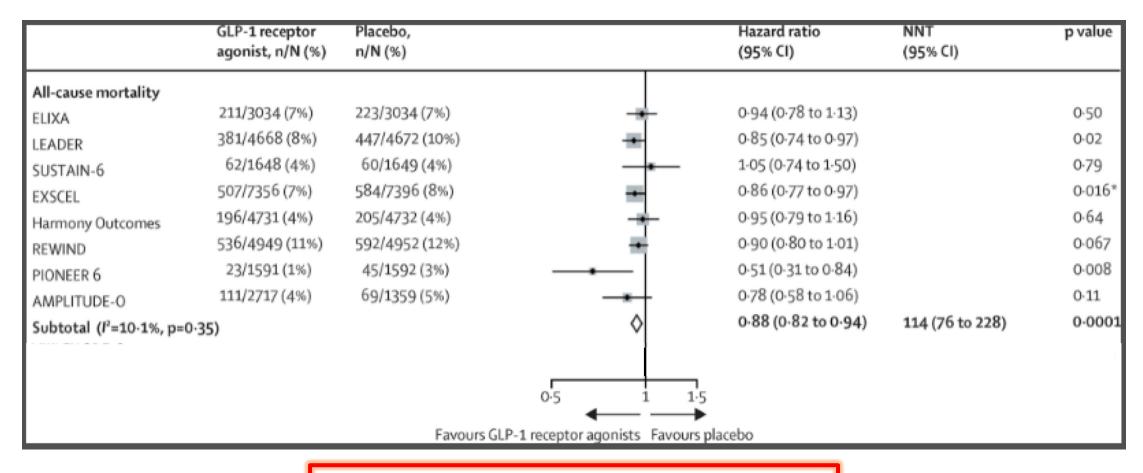
Your 56 year old patient presents for post hospital follow up after a recent myocardial infarction (MI) and percutaneous coronary intervention (PCI).


- Medical Hx: Prior to his MI he "never had any health problems"
- Physical exam: BMI is 31 kg/m², BP is 122/76
- Discharge medications: aspirin 81 mg, prasugrel 10 mg, losartan 50 mg, atorvastatin 80 mg daily; metoprolol tartrate 25 mg, metformin 500 mg twice a day
- Labs during his admission: Cr 1.5, UA protein +, LDL of 155, A1C of 7.8%
- Echocardiogram normal ejection fraction

He wants to do anything possible to avoid having another heart attack.

What medication changes, if any, would you recommend?

SGLT2i – Major Adverse Cardiovascular Events (MACE)


~14% MACE benefit in secondary prevention

Meta Analysis of GLP-1RA RCTs – MACE

	GLP-1 receptor agonist, n/N (%)	Placebo, n/N (%)		Hazard ratio (95% CI)	NNT (95% CI)	p value
Three-point MACE						
ELIXA	400/3034 (13%)	392/3034 (13%)	*	1-02 (0-89-1-17)		0-78
LEADER	608/4668 (13%)	694/4672 (15%)	*	0-87 (0-78-0-97)		0-01
SUSTAIN-6	108/1648 (7%)	146/1649 (9%)		0.74 (0.58-0.95)		0-016
EXSCEL	839/7356 (11%)	905/7396 (12%)	*	0-91 (0-83-1-00)		0.061
Harmony Outcomes	338/4731 (7%)	428/4732 (9%)	- 	0-78 (0-68-0-90)		0-0006
REWIND	594/4949 (12%)	663/4952 (13%)	*	0-88 (0-79-0-99)		0-026
PIONEER 6	61/1591 (4%)	76/1592 (5%)		0.79 (0.57-1.11)		0-17
AMPLITUDE-O	189/2717 (7%)	125/1359 (9%)		0.73 (0.58-0.92)		0.0069
Subtotal (I ² =44-5%, p=6	0-082)		♦	0-86 (0-80-0-93)	65 (45-130)	<0.0001
			0.5 1 1.5			
		Favours GLP-	-1 receptor agonists Favours placebo			

14% reduction in MACE

Meta Analysis of GLP-1 RA RCTs – All Cause Mortality

12% reduction in all-cause mortality

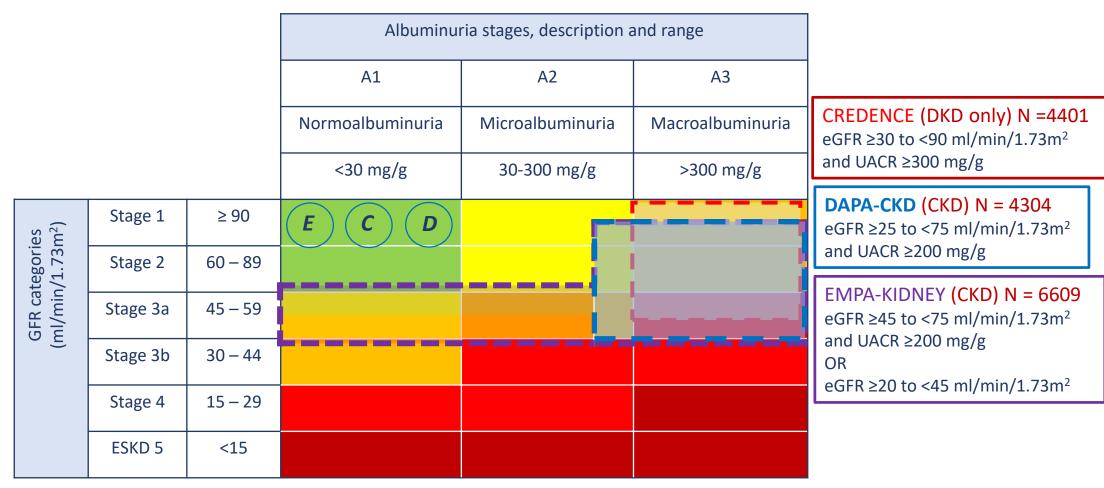
SGLT2i and GLP-1RA — Take Home Points

~15% reduction in MACE (both) and 12% reduction in all cause mortality (GLP1-RA) in patients with ASCVD and T2D

Case 3

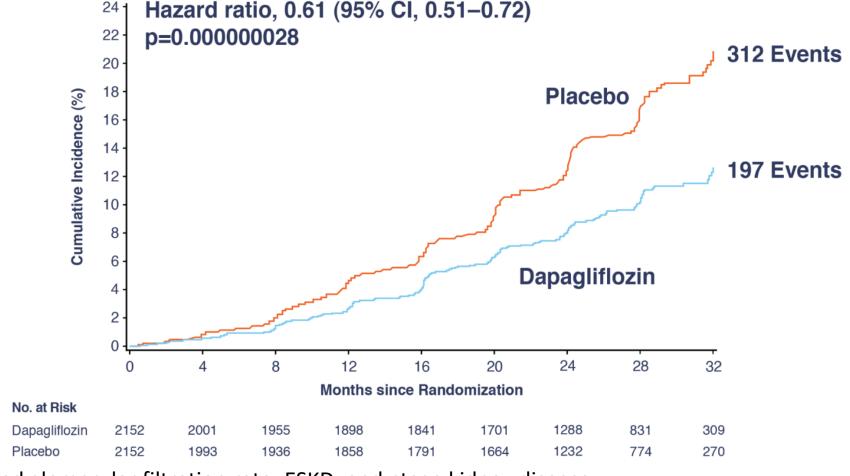
Case Presentation CKD

- 68 y/o man with T2D x 20 years with hypertension, hyperlipidemia, erectile dysfunction, NSTEMI (2016), retinopathy, neuropathy, NASH, smokes marijuana daily to reduce pain of DPNP.
- Current meds: metformin 500 mg BID, glipizide 20 mg q hs, atorvastatin 80 mg, ASA 81, losartan 100 mg, duloxetine 60 mg
- Physical exam: BMI 32 kg/m², BP 128/74 mmHg. Fundoscopic exam: non-proliferative retinopathy. Neuro exam: Loss of vibratory and temperature sensation feet bilaterally
- Labs: A1c: 7.8 %, eGFR: 42 ml/min/1.73 m², Hgb: 12.2 g, ACR: 398 mg/g; LVEF 42%


Case Presentation CKD

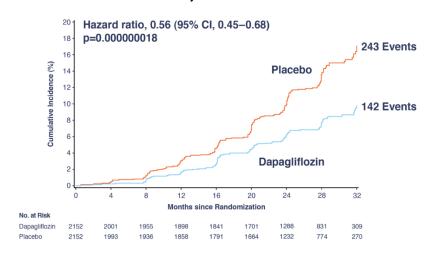
- 68 y/o man with T2D x 20 years with hypertension, hyperlipidemia, erectile dysfunction, NSTEMI (2016), retinopathy, neuropathy, NASH, smokes marijuana daily to reduce pain of DPNP.
- Current meds: metformin 500 mg BID, glipizide 20 mg q hs, atorvastatin 80 mg, ASA 81, losartan 100 mg, duloxetine 60 mg
- Physical exam: BMI 32 kg/m², BP 128/74 mmHg. Fundoscopic exam: non-proliferative retinopathy. Neuro exam: Loss of vibratory and temperature sensation feet bilaterally
- Labs: A1c: 7.8 %, eGFR: 42 ml/min/1.73 m², Hgb: 12.2 g, ACR: 398 mg/g; LVEF 42%

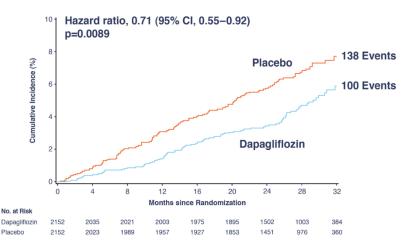
What medication changes, if any, would you recommend?


The Consistent Benefit of SGLT2i on Kidney Health from Three Major Large Scale Clinical Trials, N = 15,314

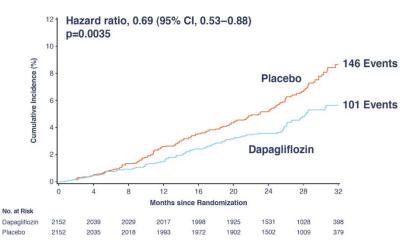
E=EMPAREG-Outcome; C=CANVAS; D=DECLARE TIMI-58

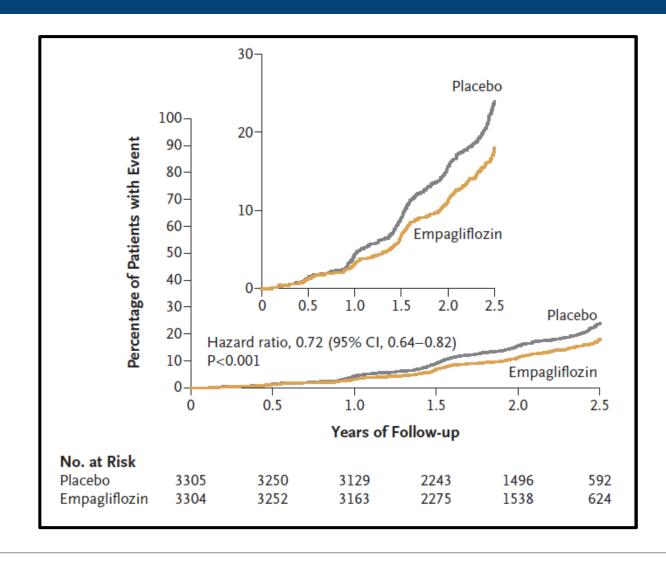
CKD, chronic kidney disease; DKD, diabetic kidney disease, eGFR, glomerular filtration rate; GFR, glomerular filtration rate


DAPA CKD: Primary Outcome: Sustained ≥50% eGFR Decline, ESKD, Renal or Cardiovascular Death


eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease.

DAPA CKD: Secondary Outcomes


Sustained ≥50% eGFR decline, ESKD, renal death


Cardiovascular death or heart failure hospitalization

All-cause mortality

EMPA CKD Primary Outcome

Practical Tips – Hyperkalemia

	SGLT2 inhibitors		Placebo					
	n/N	Events per 1000 patient-years	n/N	Events per 1 patient-yea				Hazard Ratio (95% CI)
CANVAS Program	8/5795	0.4	7/4347	0.6	4	-		• 0.75 (0.27, 2.11)
CREDENCE	169/2202	30.7	203/2199	37.4		_		0.82 (0.67, 1.01)
DAPA-CKD	48/1455	33.0	47/1451	32.0		-		1.02 (0.68, 1.54)
DECLARE-TIMI 58	30/8582	0.9	38/8578	1.1	3 	-	<u></u>	0.78 (0.48, 1.26)
EMPA-REG OUTCOME	104/4687	7.7	88/2333	13.4		_		0.58 (0.43, 0.76)
VERTIS CV	243/5493	15.4	134/2745	17.7			-	0.88 (0.71, 1.09)
Overall (I²=29.5%; P _{heterogeneity} =0.21)					•		0.80 (0.68, 0.93) P=0.004
SGLT2i results in ↓20% of hyperkalemia					0.4 0.6 Favors SGLT2		1.2 1.6 2	2.0

Practical tips – CKD & Hyperkalemia

- Helps preserve renal function
- Can initiate SGLT2i with eGFR ≥20 ml/min/1.73 m²
- No toxic effects likely with lower eGFR
- 50% metabolism via GI tract
- Reduce risk of hyperkalemia with ACEi/ARB/ARNI or MRA

SGLT2i – Take Home Point

35% reduction in adverse kidney outcomes

Case 4

Case Presentation Heart Failure

A 45-year-old woman with a history of hypertension, CKD (eGFR 32) and HFpEF (LVEF 48%) presents to your clinic for medical care.

Blood pressure: 95/61 mmHg Heart Rate: 55 bpm

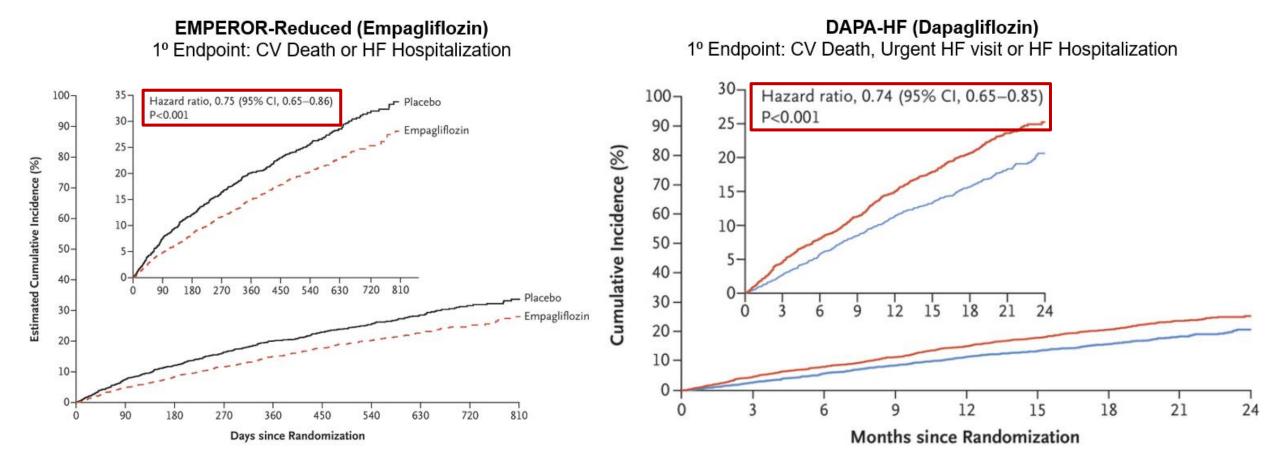
Medications:

- Losartan 25 mg daily
- Carvedilol 6.25 mg twice daily
- Spironolactone 25 mg daily

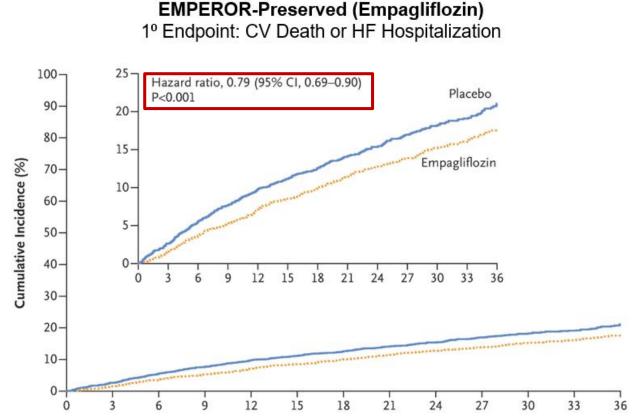
Case Presentation Heart Failure

A 45-year-old woman with a history of hypertension, CKD (eGFR 32) and HFpEF (LVEF 48%) presents to your clinic for medical care.

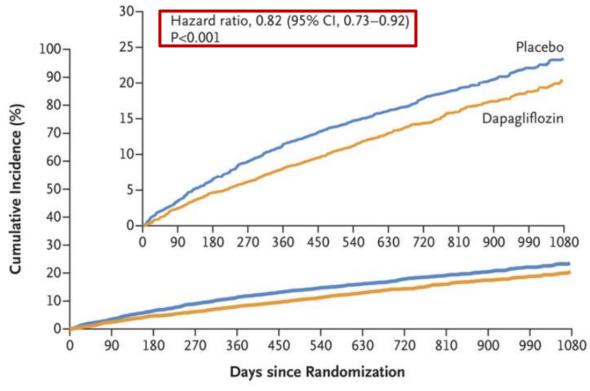
Blood pressure: 95/61 mmHg Heart Rate: 55 bpm


Medications:

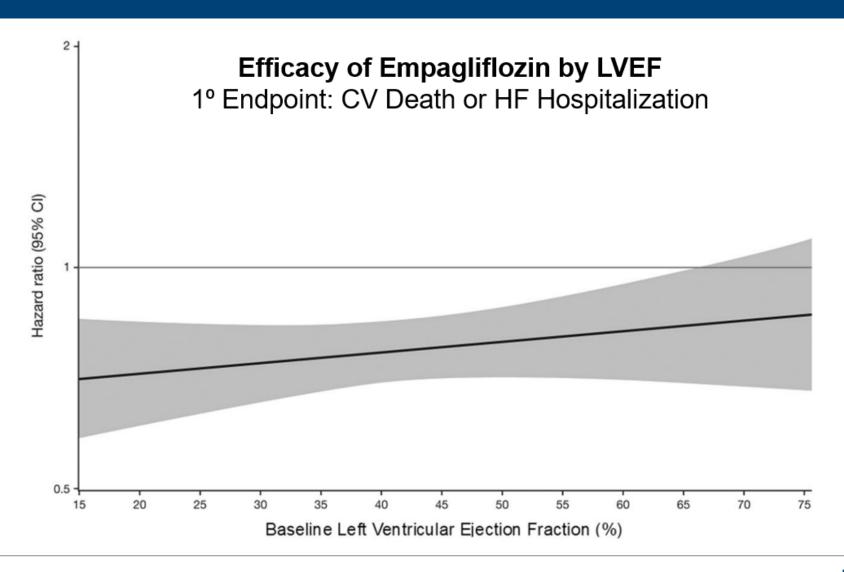
- Losartan 25 mg daily
- Carvedilol 6.25 mg twice daily
- Spironolactone 25 mg daily


She asks: "What else can I do to lower my risk of death or heart failure hospitalization?"

SGLT2i in Systolic Heart Failure (LVEF <40%)



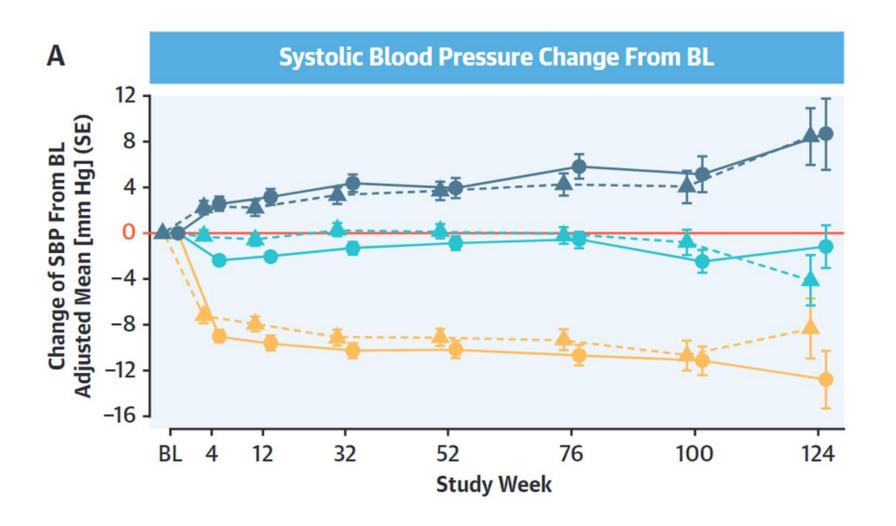
SGLT2i in HFpEF (LVEF >40%)

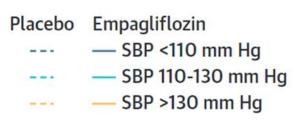


Months since Randomization

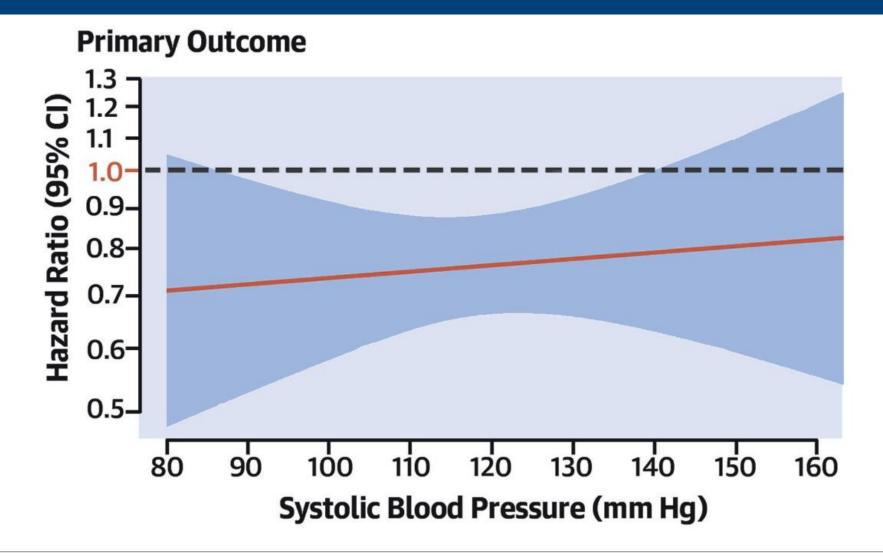
DELIVER (Dapagliflozin)1º Endpoint: CV Death, Urgent HF vist or HF Hospitalization

SGLT2i Efficacy in Heart Failure




SGLT2i in Preventing Heart Failure

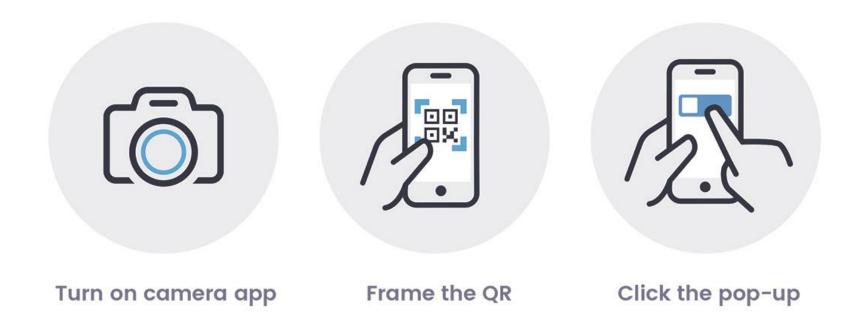
CENTRAL ILLUSTRATION: Sodium-Glucose Co-Transporter-2 Inhibitors in Patients With and Without Cardiovascular Disease


Death	With prior cardiovascu	ılar disease*	⊢■	0.56 [0.44, 0.70]	
Death	Without prior cardiova	ascular disease*	н∎н	0.56 [0.50, 0.63]	
	With prior cardiovascu	ılar disease*	н	0.72 [0.63, 0.82]	
Heart failure	Without prior cardiova	ascular disease*	⊢ ■→	0.61 [0.48, 0.78]	
	With prior cardiovascu	ılar disease*	H≡H	0.63 [0.57, 0.70]	
Heart failure+Death	Without prior cardiova	ascular disease*	H≣H	0.56 [0.50, 0.62]	
*Diagnosis of AMI, unstable angina transient ischemic attack, core (CABG or PCI) or occlusive per prior to index drug initiation	onary revascularization	favor sodium-gluco co-transporter-2 in 0.25			

Practical Tips – "Hypotensive" Patient

Practical Tips – "Hypotensive" Patient

SGLT2i – Take Home Point


20-25% reduction in death or HF hospitalization (regardless of EF)

SGLT2i/GLP-1RA in CVD and CKD — Summary

- SGLT2i
 - 15% reduction in MACE
 - 20-25% reduction in death or HF hospitalization (regardless of EF)
 - Prevent new HF
 - Reduce hyperkalemia
 - Preserve renal function (can initiate if eGFR >20)
 - Often well tolerated in "hypotensive" patients with heart failure
- GLP-1RA
 - 14% reduction in MACE
 - 12% reduction in all-cause mortality

Post-Test Questions

Case Presentation DM

Your 58-year-old patient with a history of type 2 diabetes, hypertension, obesity, and hypercholesterolemia and a prior myocardial infarction was admitted recently with pneumonia, but is now asymptomatic and fully recovered. They mentioned a "low" while undergoing physical therapy, but has not had a second episode since.

BP is 122/68, HR 68, BMI 32.2

Medication regimen: glipizide 5 mg, atorvastatin 40 mg, aspirin 81 mg, lisinopril 40 mg

Recent labs: eGFR 78, LDL 68, HbA1c 6.6%

Ejection fraction post-procedure was 55%

- (a) None, meets all goals
- (b) Switch glipizide to metformin
- (c) Switch glipizide to a GLP-1RA
- (d) Add pioglitazone

- (a) None, meets all goals
- (b) Switch glipizide to metformin
- (c) Switch glipizide to a GLP-1RA
- (d) Add pioglitazone

Case Presentation MI

Your 56 year old patient presents for post hospital follow up after a recent myocardial infarction (MI) and percutaneous coronary intervention (PCI).

- Medical Hx: Prior to his MI he "never had any health problems"
- Physical exam: BMI is 31 kg/m², BP is 122/76
- Discharge medications: aspirin 81 mg, prasugrel 10 mg, losartan 50 mg, atorvastatin 80 mg daily; metoprolol tartrate 25 mg, metformin 500 mg twice a day
- Labs during his admission: Cr 1.5, UA protein +, LDL of 155, A1C of 7.8%
- Echocardiogram normal ejection fraction

He wants to do anything possible to avoid having another heart attack.

Which of the following is FALSE:

- (a) Selected GLP-1RA have been proven to reduce future heart attacks in patients with T2D and MI
- (b) Selected SGLT2 inhibitors have been proven to reduce incident heart failure in patients with T2D and MI
- (c) Use of GLP-1RA, albeit at doses higher than those studied in CV outcomes trials, can facilitate weight loss
- (d) SGLT2 inhibitors and GLP-1RA with proven CV benefit can be used with or without background metformin
- (e) SGLT2 inhibitors are contraindicated in patients with CKD3 and proteinuria

- (a) is correct, multiple trials, e.g. LEADER for liraglutide.
- (b) is correct, multiple trials, e.g. EMPA REG OUTCOME for empagliflozin.
- (c) is correct, in people with or without T2D, e.g. STEP 1 trial for semaglutide.
- (d) is correct, current ADA standards of care recommend selected SGLT2 inhibitors and GLP-1RA regardless of background metformin in patients with T2D and prior MI.
- (e) is false. Selected SGLT2 inhibitors have been shown to improve CV and renal outcomes in patients with CKD 3 and proteinuria, e.g. DAPA CKD trial, dapagliflozin

Case Presentation CKD

- 68 y/o man with T2D x 20 years with hypertension, hyperlipidemia, erectile dysfunction, NSTEMI (2016), retinopathy, neuropathy, NASH, smokes marijuana daily to reduce pain of DPNP.
- Current meds: metformin 500 mg BID, glipizide 20 mg q hs, atorvastatin 80 mg, ASA 81, losartan 100 mg, duloxetine 60 mg
- Physical exam: BMI 32 kg/m², BP 128/74 mmHg. Fundoscopic exam: non-proliferative retinopathy. Neuro exam: Loss of vibratory and temperature sensation feet bilaterally
- Labs: A1c: 7.8 %, eGFR: 42 ml/min/1.73 m², Hgb: 12.2 g, ACR: 398 mg/g; LVEF 42%

- (a) None, meets all goals
- (b) Switch glipizide to SGLT2i
- (c) Switch glipizide to a GLP-1RA
- (d) Switch glipizide to SGLT2i + GLP-1RA

- (a) None, meets all goals
- (b) Switch glipizide to SGLT2i
- (c) Switch glipizide to a GLP-1RA
- (d) Switch glipizide to SGLT2i + GLP-1RA

Case Presentation HF

A 45-year-old woman with a history of hypertension, CKD (eGFR 32) and HFpEF (LVEF 48%) presents to your clinic for medical care.

Blood pressure: 95/61 mmHg Heart Rate: 55 bpm

Medications:

- Losartan 25 mg daily

- Carvedilol 6.25 mg twice daily

- Spironolactone 25 mg daily

She asks: "What else can I do to lower my risk of death or heart failure hospitalization?"

"What else can I do to lower my risk of death or heart failure hospitalization?"

- (a) Increase carvedilol 12.5 mg twice daily
- (b) Start aspirin 81 mg daily
- (c) Increase diuretics
- (d) Start dapagliflozin 10 mg daily
- (e) Start digoxin 125 mcg daily

- (a) Increase carvedilol 12.5 mg twice daily
- (b) Start aspirin 81 mg daily
- (c) Increase diuretics
- (d) Start dapagliflozin 10 mg daily
- (e) Start digoxin 125 mcg daily

SGLT2i/GLP-1RA in CVD and CKD — Summary

- SGLT2i
 - 15% reduction in MACE
 - 20-25% reduction in death or HF hospitalization (regardless of EF)
 - Prevent new HF
 - Reduce hyperkalemia
 - Preserve renal function (can initiate if eGFR >20)
 - Often well tolerated in "hypotensive" patients with heart failure
- GLP-1RA
 - 14% reduction in MACE
 - 12% reduction in all-cause mortality