The evolving field of autoimmune neurology

Steven Vernino M.D. Ph.D.

Professor, Vice Chair of Education and Faculty Affairs
Director of autonomic disorders fellowship
Department of Neurology
UT Southwestern Medical Center, Dallas, Texas

<u>Disclosures</u>: Consultant for Theravance, argenx, CSL Behring, Kyverna; Research support from Takeda, Lundbeck, Regeneron, Mission MSA and NIH

Neuroimmunology

MS

Autoimmune Neurology

diseases with a specific immune response against defined neuronal antigen(s)

Immune-mediated nerve & muscle disorders

GBS / AMAN
CIDP
"Neuromeumatology" pathy

Inflam. plexopathies

Lpgys Gerebritis DM / IBM

CNS or PNS vasculitis

RA, SS

Neuroimmunology

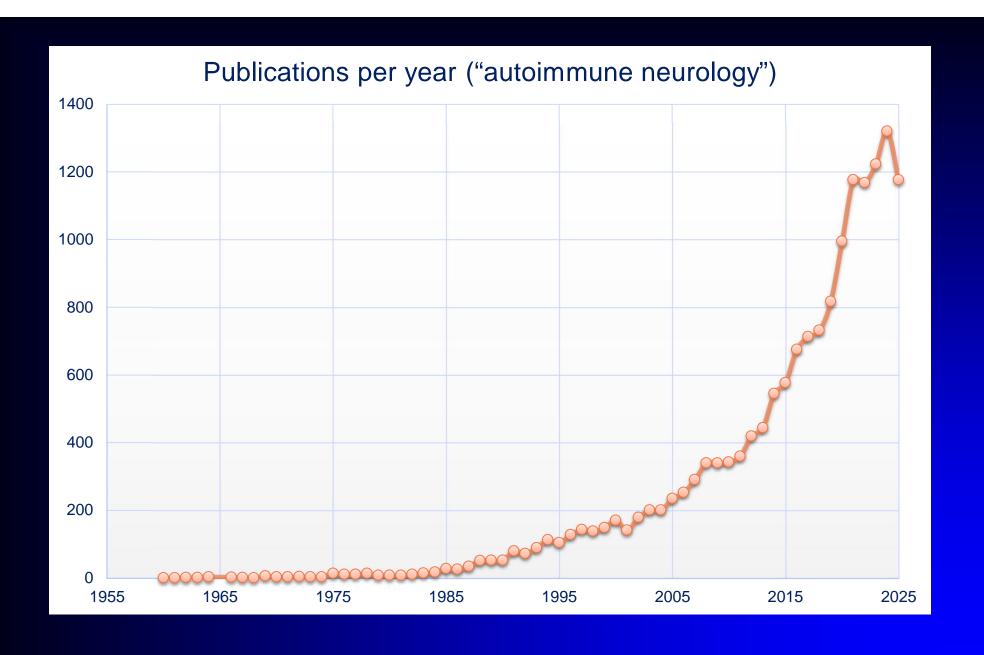
Autoimmune Neurology

NMOSD & MOGAD

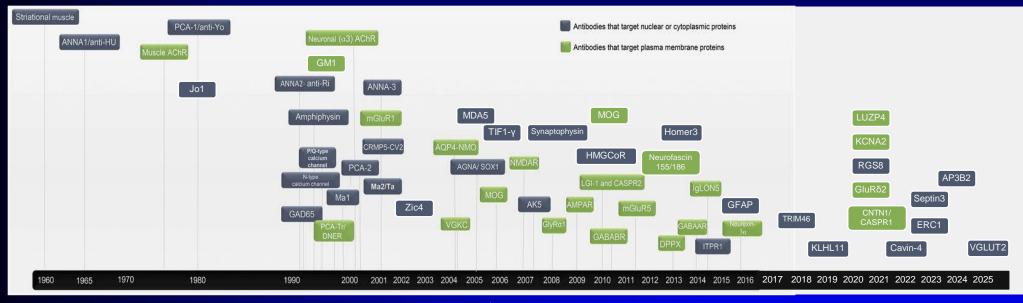
Autoimmune Encephalopathies

Limbic encephalitis
Brainstem enceph.
SRE
Autoimmune ataxia

Neuromuscular Syndromes


MG LES Neuromyotonia AAG Paraneoplastic disorders

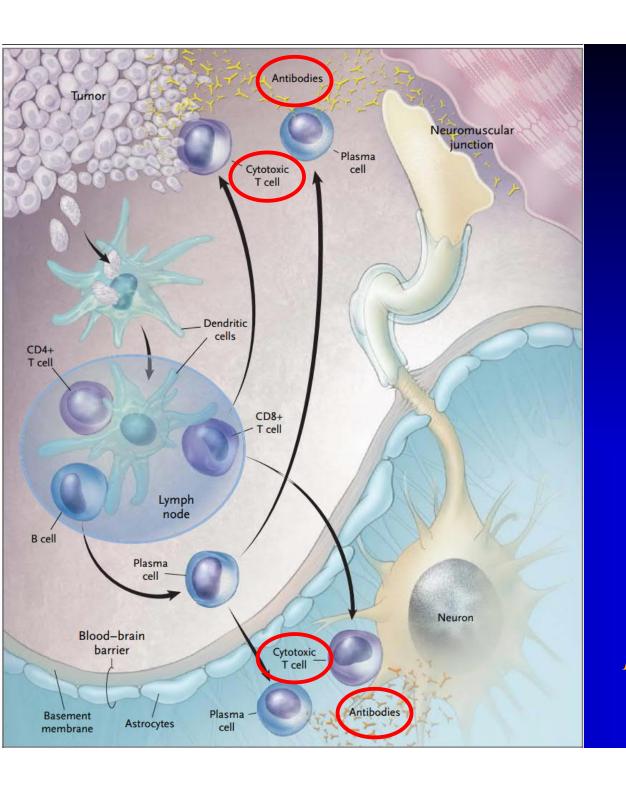
PCD


PSN

PLE

SPS

Autoantibody timeline



Adapted from Lopez-Chiriboga et al. Neurology 2017

Paraneoplastic Pathophysiology

Darnell and Posner NEJM 2003

One approach Consider disorders based on antibody target

Onconeural antigens (Hu, Yo, CRMP-5)

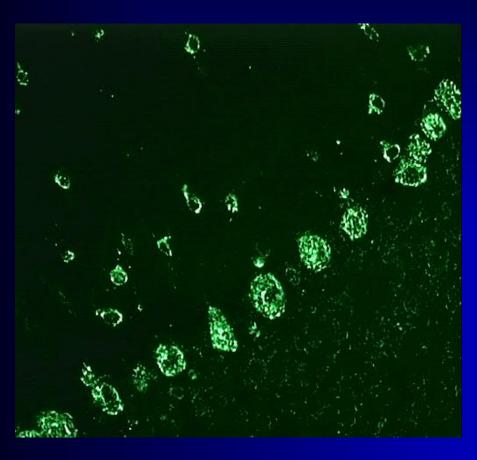
- Intracellular probably not pathogenic
- Surrogate of cell-mediated response to cancer

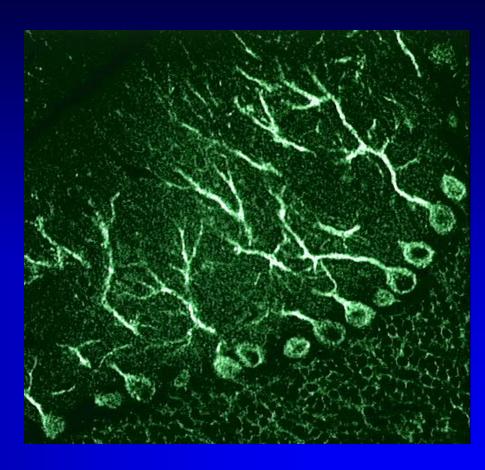
Surface (membrane) antigens (AQ4, AChR, NMDAR)

- May produce direct Ab effects (i.e. MG)
- Interact with conformational epitopes

Intracellular antigens, not neuron-specific (GFAP, GAD)

- Pathophysiology unclear
- Clinically, seem to behave like cell surface Ab

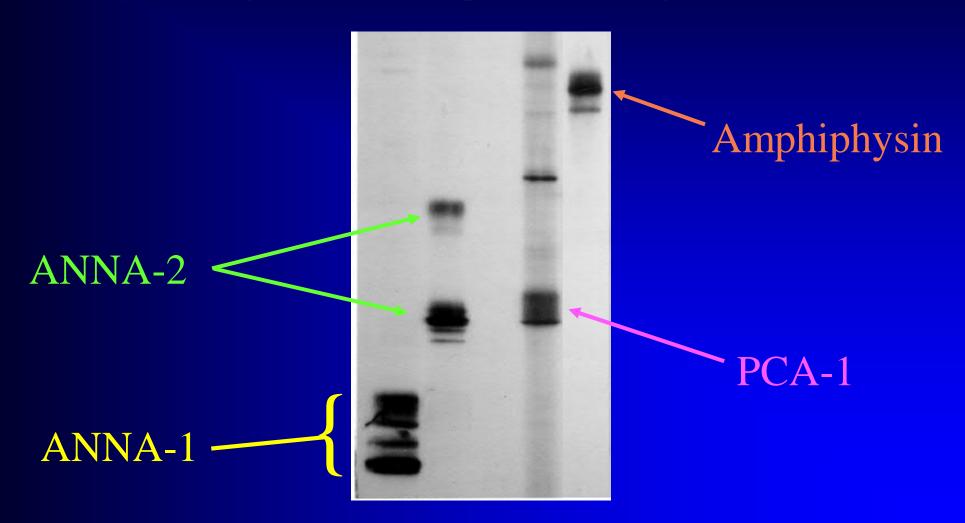

Seronegative autoimmune neurological disorders


Diagnostic testing

Onconeural antigens (Hu, Yo, CRMP-5)

- Neuronal or cytoplasmic antigens expressed by cancer cells and neuronal tissues
- Identified by IHC pattern in tissue and/or Western (or dot) blot
- Reported as a titer.
- High specificity (few false positives)
- Testing both CSF and serum improves sensitivity
- Testing a panel of relevant antibodies improves sensitivity

Purkinje Cell Antibodies



PCA-1 PCA-2

Western Blot

(Antibody binding to cerebellar proteins in a gel)

Nuclear and cytoplasmic antibodies ~2017

Name

ANNA-1 ("Hu")

ANNA-2 ("Ri")

ANNA-3

PCA-1 ("Yo")

PCA-2

PCA-Tr (DNER)

Amphiphysin

CRMP-5 ("CV2")

Ma1 & Ma2

Sox-1 (AGNA)

Zic4

Associations

SCLC; various syndromes

SCLC or breast carcinoma; POM

SCLC; various syndromes

Ovarian or breast; PCD

SCLC; various syndromes

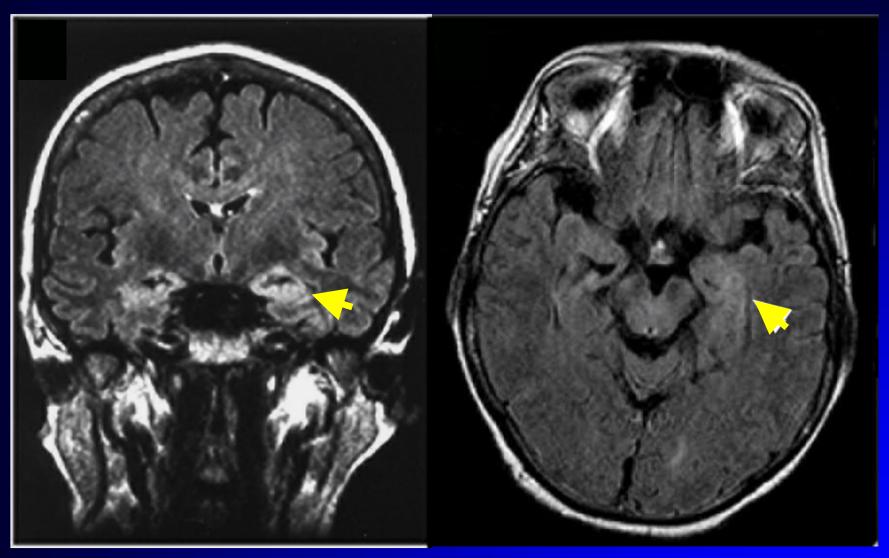
Hodgkins lymphoma; PCD

SCLC or breast; various syndromes

SCLC or thymoma; various syndromes

including PN and paraneoplastic chorea.

testicular (men) or breast (women); PLE

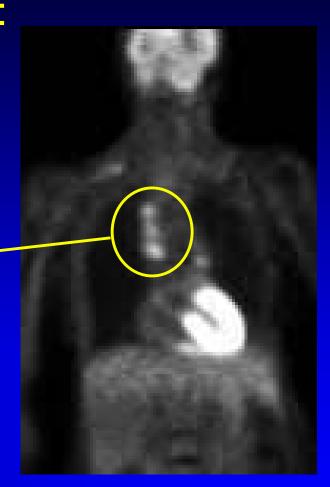

SCLC; LEMS & other syndromes

SCLC; PCD

Illustrative Case:

- 59 year-old woman (50 pack year smoking history)
- Develops burning and numbness of feet and hands
- Over weeks, behavioral/cognitive changes
 - Becomes a more pleasant and pliable person
 - Increasing memory loss. Cannot remember names, events or directions from day to day.
 - Good memory for events preceding her illness
 - Loses sense of smell and taste. No interest in smoking
 - -20# weight loss
- Then, she has a generalized seizure
- In addition to memory deficit, exam shows areflexia and marked asymmetric proprioceptive sensory loss

MRI - FLAIR


No gadolinium enhancement

 Paraneoplastic antibody testing: Positive for ANNA-1 (anti-Hu)

CXR and CT body: normal.

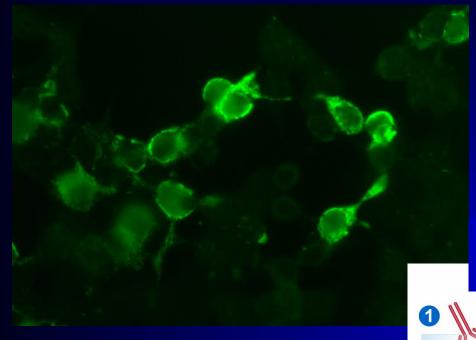
 PET: Hypermetabolic foci in mediastinal lymph nodes

 Surgical Biopsy: Small-cell lung carcinoma

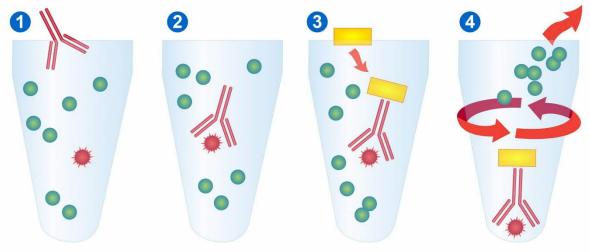
Treatment of classical CNS paraneoplastic neurological disorders

- These disorders are rare
- No placebo controlled trials
- Prognosis is poor; irreversible neuronal injury
- Aggressive cancer treatment and immunosuppression can lead to meaningful arrest of progression
- One small (20 patient) prospective open label trial suggested a benefit of cyclophosphamide compared to historical controls

Diagnostic testing

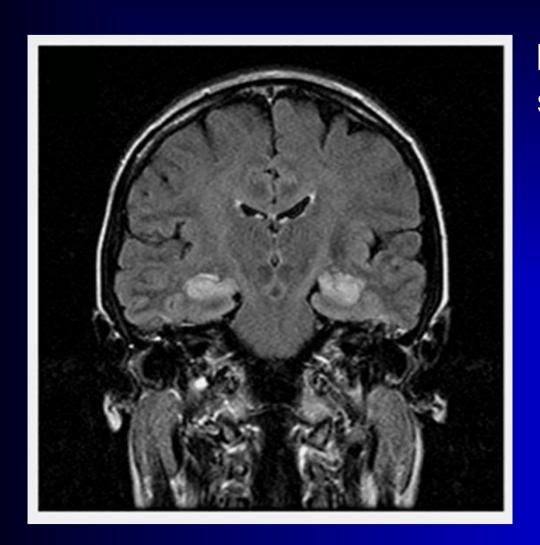

Onconeural antigens (Hu, Yo, CRMP-5)

- Identified by immunohistochemistry pattern in tissue or with Western blot
- Reported as a titer. High specificity


Surface (membrane) antigens (AQ4, AChR, NMDAR)

- Tested by RIA or CBA
- Reported as a level (binding capacity) for RIA
- For CBA, as pos/neg or with titer
- Higher rates of false (low nonspecific) positives
- Antibody more likely to be pathogenic
- Better treatment response targeting humoral immunity (PLEX, steroids, IVIG, anti-CD20)
- Less often associated with cancer

Cell-based assay (CBA)


Radioimmunoprecipitation assay

Measure radioactivity in test tube

Illustrative Case

- 62 year-old man (non-smoker)
- Over weeks, develops cognitive impairment
 - Lost in familiar places
 - Trouble managing checkbook
 - Failure to recognize friends
- Brief spells of behavioral arrest and intense sweating
- Alert, appears well
- Marked short-term memory loss
 Motor, sensory and coordination exam normal

EEG: generalized slowing left temporal sharp waves & short electrographic seizure

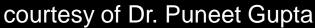
CSF: normal

Serum sodium: 125 meq/L

Paraneoplastic antibodies: Negative

Positive LGI1 antibody

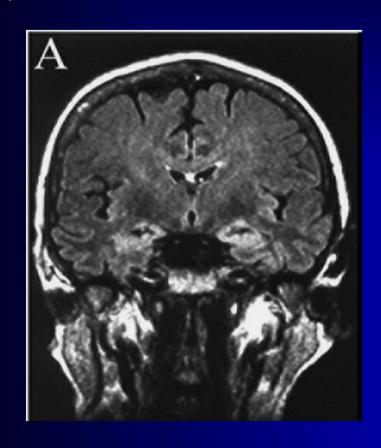
Autoimmune Limbic Encephalitis (with VGKC/LGI1 antibodies)

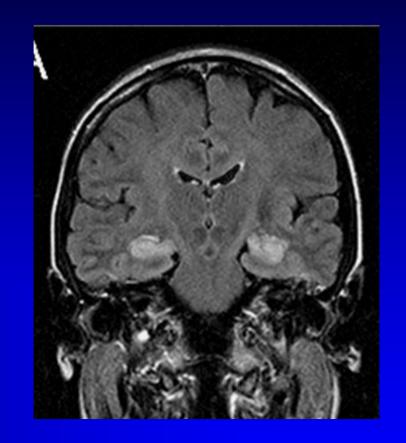

- Very similar to PLE
 - Cognitive/behavioral/psych. symptoms
 - Temporal lobe CPS
 - MRI & EEG findings
- Usually not associated with cancer
- Dramatic response to high dose steroids or PLEX
- Clinical features
 - Male predominance
 - Hyponatremia (cause unknown)
 - Autonomic hyperactivity symptoms
 - Sweating and salivation
 - Faciobrachial dystonic seizures

Thieben et al. Neurology 2004; Vincent et al. Brain 2004

Other features of this syndrome

"Faciobrachial dystonic seizures" may precede the onset of cognitive changes and may not respond to AED




Irani et al., Ann Neurol 2011

A tale of two limbic encephalitides

(amnesia, confusion and seizures)

Paraneoplastic (SCLC, anti-Hu)
Pt dead within 9 mos despite Rx

No cancer (LGI1 AIE)

Excellent recovery w/ steroids
& immunotherapy

Cell surface antibodies in Neurology

Disorder	Associated	<u>l antibody</u>

MG α1 AChR, MUSK, LRP4

AAG α3 ganglionic AChR

Lambert-Eaton VGCC

NMT (Isaacs/Morvan) VGKCc (Caspr2)

Autoimmune encephalitis VGKCc (LGI1), NMDA-R

AMPA-R, GABA-R, DPPX

SPS Glycine-R

Rasmussen encephalitis α7 AChR, GluR3

NMO aquaporin-4, MOG

PCD VGCC, mGluR1

Antibodies against neuronal membrane Ag

Not highly predictive of cancer

- e.g. about 10-15% of MG patients have thymoma
- A minority of NMDAR patients have ovarian tumors
- Cancer association varies according to Ab

Antibodies may be pathogenic

- Antibody level correlates roughly with disease severity
- Disease can be transferred in passive transfer animal models
- Antibody effects may be reversible
- Treatments that reduce antibody levels may improve disease

Beware of low specificity at low Ab levels

- VGKC Ab 2-3% false positive (? significance if LGI1/CASPR2 neg)
- 40% of patients with ganglionic AChR < 0.1 had no neurological dx

Diagnostic testing

Onconeural antigens (Hu, Yo, CRMP-5)

- Identified by immunohistochemistry pattern in tissue or with Western blot
- Reported as a titer. High specificity

Surface (membrane) antigens (AQ4, AChR, NMDAR)

- Tested by RIA or CBA
- Higher rates of false (low nonspecific) positives

Intracellular antigens, not neuron-specific (GFAP, GAD)

- Can be tested by many methods (including ELISA)
- Reporting depends on assay. Different labs with different values
 N.B. GAD-65 can be reported as IU or as nmol/L with different normal
- Treatment approach more similar to cell-surface Ab

GAD-65 antibodies

- Glutamic acid decarboxylase is synthetic enzyme for GABA (and also present in pancreas islet cells)
- ~ 60% Stiff-person syndrome (> 20.0)
- 7% positive rate in normals (low level < 0.5)
- 100% type 1 diabetes (low level < 20.0)
- Autoimmune epilepsy (> 100) personal experience
- Limbic encephalopathy
- Autoimmune ataxia
- Antibody level is important

Autoimmune encephalopathy UT Southwestern experience

64 cases in 6 years (>10 per year)

likely an underestimate based on retrospective review

Antibody	number	Clinical Features	Cancer
No antibody	20	Immunotherapy responsive limbic encephalitis. Age range 5-66 yrs	25% (adenocarcinomas)
NMDA-R	16	More than half in children (median age 15) 50% with normal MRI	12% (ovarian teratomas)
VGKCc	9	7/9 male. Typical limbic features	40% (various)
Thyroid	9	"Hashimoto" cases, plus others	0
GAD-65	6	Memory loss and seizures (median age 40)	0
GABA _B	3		1 (SCLC)
Hu (ANNA-1)	1	Typical limbic encephalitis	Probable SCLC

Dubey et al. J Neuroimmunol 2015

Lessons learned about the misdiagnosis of autoimmune encephalitis

- Functional / nonspecific symptoms represent a high proportion of misdiagnoses.
- Psychiatric disorders (first psychosis) may be misclassified as autoimmune encephalitis.
- Non-immune neurological disorders misdiagnosed as autoimmune encephalitis.
- False positive or misinterpretation of antibody testing.

Alternative diagnoses	No (%)
Functional Neurological Disorder	27 (25)
Psychiatric Disorder	19 (18)
Neurodegenerative Disorder	22 (20.5)
Neoplasm	10 (9.5)
Seizure Disorder	5 (4.5)
Other Neurological Disorder	13 (12.5)
Nonspecific symptoms (fibromyalgia, medication effect, sleep disturbance)	11 (10)

Flanagan et al. Autoimmune Encephalitis Misdiagnosis in Adults. JAMA Neurol. 2023

Autoimmune neurology

- Wide diversity of clinical presentation
- Different antibodies are interpreted differently
- Clinicians need to consider immunopathophysiology to better select therapies
- Still clinically underrecognized?

Key advancements emerging trends

- Ongoing autoantibody discovery
 Accessibility and standardization of autoantibody testing
- Understanding of disease mechanisms

 Role of complement, Plasma cell regulation, immune tolerance
- Successful Treatment trials
 Particularly for Ab-mediated diseases like MG, NMOSD
- New treatment modalities
 CAR T-cell therapy, FcRN targeted treatments
- Comprehensive multidisciplinary care

Thank you

Dr. Div Dubey

- UT Southwestern neurology resident
- Fellowship training at Harvard and Mayo
- Mayo Rochester Autoimmune Neurologist
- Professor of Neurology / Laboratory Medicine
- Co-Director, Neuroimmunology Laboratory