

University of Texas Southwestern Medical Center
Internal Medicine Grand Rounds
July 31, 2015

Potassium: Friend or Foe?

Aylin R. Rodan, MD, PhD
Assistant Professor of Internal Medicine
Nephrology Division
UT Southwestern Medical Center

This is to acknowledge that Aylin Rodan, MD, PhD has disclosed that she does not have any financial interests or other relationships with commercial concerns related directly or indirectly to this program. Dr. Rodan will be discussing off-label uses in her presentation.

Biographical Information

Dr. Rodan is a physician-scientist with an interest in electrolyte disorders, hypertension and the underlying epithelial ion transport mechanisms in the kidney driving these clinical syndromes. She obtained a B.S. in Biology with Distinction from Yale University, graduating *magna cum laude*, and began her scientific career there studying the role of endoplasmic reticulum chaperones in protein folding. Dr. Rodan then enrolled in the Medical Scientist Training Program at the University of California San Francisco, where she studied the mechanisms of behavioral changes in *Drosophila melanogaster* in response to alcohol, examining the effects of protein kinase A signaling in different parts of the brain, as well as the role of insulin signaling. After receiving her MD and PhD degrees, she continued at UCSF for internal medicine residency, where she was recognized with the Keith Johnson Award for outstanding second year resident. Dr. Rodan then moved to Dallas for nephrology fellowship training at UT Southwestern, where she deepened her understanding of renal physiology and clinical nephrology, and served as chief fellow. She has been on the faculty of the nephrology division since 2011, and is currently an Assistant Professor. Her laboratory studies ion channels and transporters, and the signaling cascades that regulate them, in the *Drosophila* renal tubule. The goal is to understand these transporters, channels and their regulation in greater mechanistic detail, identify new regulatory factors by performing forward genetic screens, and translate these insights into improved understanding of human kidney disorders. She has received support for her research from a career development award from the NIH, a pilot and feasibility award from the UT Southwestern O'Brien Center, and the Carl Gottschalk Young Investigator Award from the American Society of Nephrology, as well as an award for outstanding genetic research from the Browne Genetic Research Fund. Dr. Rodan also sees patients with general medicine and kidney disorders at Parkland and Zale Lipshy hospitals, and teaches medical, undergraduate and graduate students and housestaff, with an emphasis on renal physiology.

Purpose and Overview:

The purpose of this Grand Rounds presentation is to review the potential benefits and harms of potassium intake on human health. Recent advances illuminating the physiology underlying the beneficial effects of potassium will be reviewed. In some patients, excess potassium intake may result in hyperkalemia; the risk factors for this electrolyte disorder will be reviewed, as well as management approaches. Understanding of these principles will guide the clinician in optimizing recommendations for potassium intake in different patient populations.

Objectives:

1. Review the beneficial effects of potassium intake on human health
2. Review recent advances in understanding the physiology underlying the beneficial effects of potassium
3. Identify risk factors for hyperkalemia
4. Understand risks and benefits of current treatments for hyperkalemia

Background and Introduction

The kidney plays an essential role in maintaining homeostasis of blood ion concentrations. Because the concentration gradient of potassium across the cell membrane is a key determinant of the membrane potential of cells, deviations in serum potassium of < 3 mEq/L from the normal setpoint can lead to severe muscle dysfunction, resulting in respiratory failure and cardiac arrest. Less severe hypo- and hyperkalemia are also associated with morbidity and mortality across various patient populations (1-8). In addition, deficiencies in potassium intake have been associated with hypertension and adverse cardiovascular outcomes. This is likely due to the interrelated handling of sodium and potassium by the kidney. Here, recent data on the beneficial effects of potassium on blood pressure and cardiovascular outcomes will be reviewed, along with the physiological basis for these effects. In some patient populations, however, potassium excess is deleterious. Risk factors for the development of hyperkalemia will be reviewed, as well as the risks and benefits of existing and emerging therapies for hyperkalemia.

Potassium: Friend – The Beneficial Effects of Potassium Intake

High blood pressure is the largest threat to human health worldwide (9). The beneficial effects of potassium salts in promoting natriuresis and diuresis have long been appreciated (10,11). Recent studies have provided further evidence of the beneficial effects of potassium intake on blood pressure and clinical outcomes. In a meta-analysis of 21 randomized controlled trials, Aburto *et. al.* found that higher potassium intake resulted in blood pressure lowering in the overall population studied, with more pronounced effects in patients with hypertension or consuming a high sodium diet (Table 1) (12). Furthermore, analysis of 11 cohort studies with a total of 127,038 participants showed that potassium intake in the range of 90-120 mmol/day was associated with a decreased risk of stroke (RR 0.79, 95% confidence interval 0.68 to 0.93). On the basis of these findings, the World Health Organization recommends daily potassium intake of at least 90 mmol/day (3.5 g/day) (12), while the Institute of Medicine recommends an intake of at least 120 mmol/day (4.7 g/day) (13).

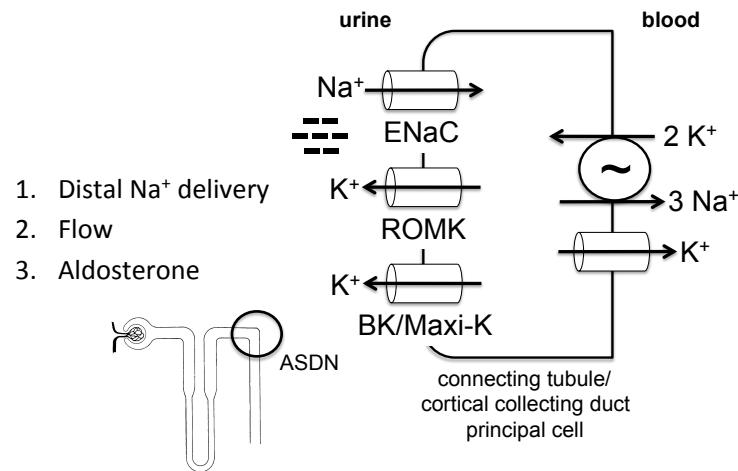
Table 1. Effect of higher potassium intake on blood pressure.
Adapted from ref 12.

	SBP (mmHg)	DBP (mmHg)
Overall population	-3.49	-1.96
Hypertensive subjects	-5.32	-3.10
High Na ⁺ (> 4g/day) intake	-6.91	-2.87

The PURE (Prospective Urban Rural Epidemiology) study adds further support to this idea. A global population comprising ~102,000 adults was studied. 24 hour urinary potassium was estimated from spot urine samples. This study found that for any given level of sodium intake, higher potassium intake was associated with decreased blood pressure, and *vice versa*. As in the Aburto study, the modifying effect of potassium was greatest in those individuals consuming the highest sodium diets (14). Analysis of participants in the Dallas Heart Study also showed increasing systolic and diastolic blood pressure with increases in the ratio of urinary sodium to potassium in both African-American and non-African-American subjects, with a stronger effect in men than in women (15). This is particularly relevant given high sodium consumption worldwide. In the United States, median sodium intake is 3.4 g/day, with fewer than 10% of individuals consuming < 2.3 g/day (16), and worldwide, mean sodium intake is 4.9 g, with 3.3% of individuals consuming < 2.3 g/day (14). Furthermore, in PURE, high potassium intake, as inferred from urinary excretion, was associated with decreased risk of death or cardiovascular events, primarily driven by decreased risk of death, while low potassium intake was associated with increased risk of death and cardiovascular events (17). However, median potassium intake in the United States is estimated to be 66 mmol (2.6 g)/day (16), while worldwide the median

potassium intake is 54 mmol (2.12 g)/day (14). The National Kidney Foundation provides information on the potassium content of various foods at <https://www.kidney.org/atoz/content/potassium>, and a partial list of high potassium foods is provided in Table 2.

Why is Potassium Beneficial? Recent Advances


It has long been appreciated that potassium has natriuretic and diuretic effects. In 1935, Keith and Binger reported a series of 60 patients, of whom 80% had a diuretic response to potassium salts. They demonstrated an increase in urinary sodium excretion in several patients (10). Subsequent studies further elucidated the relationship between urinary sodium and potassium handling. Womersley and Darragh, studying themselves, demonstrated that severely depleting the diet of potassium (2 mEq K⁺/day) caused sodium and water retention in a dietary sodium-dependent fashion (18). Similarly, in a group of ten healthy men, a low potassium diet (10 mEq K⁺/day) resulted in decreased urinary sodium excretion, increased blood pressure, and salt sensitivity (19).

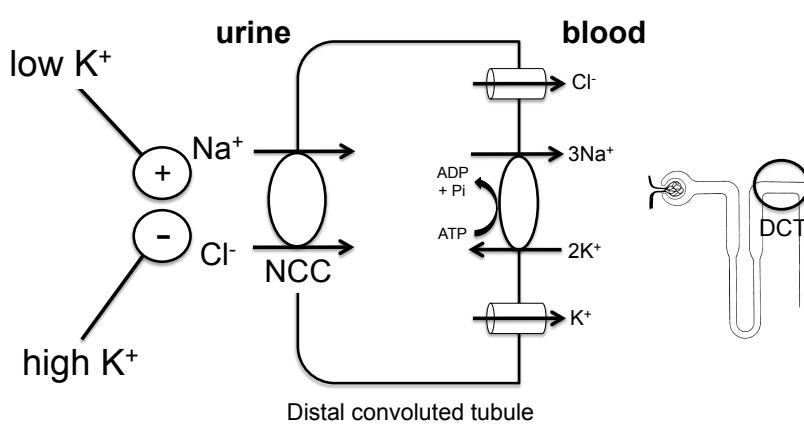
Potassium is freely filtered at the glomerulus and ~2/3 is reabsorbed in the proximal tubule, and an additional ~25% in the thick ascending limb of the loop of Henle (20). Fine-tuning of renal potassium excretion occurs in the aldosterone-sensitive distal nephron (ASDN), comprising the late distal convoluted tubule (DCT), connecting tubule (CNT) and cortical collecting duct (CCD) (21). In this segment, three key factors promote potassium secretion into the tubular lumen: sodium delivery; tubular fluid flow rate; and aldosterone (20). Sodium reabsorption through the epithelial sodium channel (ENaC) generates the negative luminal charge that drives potassium secretion (Figure 1) (20). Changes in sodium reabsorption in segments proximal to the ASDN (proximal tubule, thick ascending limb, and distal convoluted tubule) influence sodium delivery to the ASDN, thereby altering potassium secretion in this segment.

Studies performed in the 1970s and 1980s established that potassium influences proximal sodium reabsorption. For example, intravenous infusions of KCl decrease sodium reabsorption in the proximal tubule (22), while bathing the thick ascending limb in a high potassium bath, as might occur during medullary potassium recycling, decreases sodium reabsorption in that

Table 2. Partial list of high potassium foods. Adapted from <https://www.kidney.org/atoz/content/potassium>.

High Potassium Foods
apricots
cantaloupe
mango
prunes
butternut squash
beets
carrots
spinach
beans
okra
potatoes
milk
yogurt
nuts (eg peanut butter)

Figure 1. Key determinants of K⁺ secretion in the aldosterone-sensitive distal nephron (ASDN). Sodium reabsorption through the epithelial sodium channel (ENaC) generates a lumen-negative charge that drives potassium secretion through the ROMK and BK potassium channels. Therefore, distal sodium delivery is a key determinant of potassium secretion. Tubular lumen flow stimulates ENaC and BK, and effectively lowers luminal potassium concentration. Aldosterone upregulates ENaC and the Na⁺/K⁺-ATPase, and has additional effects, such as stimulating medullary potassium recycling, that enhance potassium secretion.


segment (23). Subsequent studies showed that administration of a high potassium diet or aldosterone to experimental animals results in increased medullary potassium recycling, with increased potassium concentration in the medullary interstitium and decreased sodium reabsorption in the thick ascending limb (24,25). More recent studies have also confirmed that high dietary potassium decreases sodium reabsorption in the thick ascending limb (26).

Effects of potassium on the distal convoluted tubule sodium chloride cotransporter (NCC)

In recent years, a number of investigators have examined the effect of varying dietary potassium intake in animals on the thiazide-sensitive sodium chloride cotransporter, NCC, which mediates sodium chloride reabsorption in the distal convoluted tubule. These studies have focused on the abundance of total and apical NCC as well as NCC phosphorylation, since NCC phosphorylation increases transport of sodium chloride (27,28). In some cases clearance studies and blood pressure measurements have been performed. A relative weakness of these studies is that none has directly examined sodium chloride flux in the DCT. Nevertheless, a consistent finding has been that high dietary potassium has a thiazide-like effect, inhibiting NCC expression and phosphorylation (29-32), whereas low dietary potassium has the opposite effect, increasing NCC expression and phosphorylation (32-35). In fact, even a single oral potassium “meal” is sufficient to rapidly suppress NCC and increase urinary sodium excretion (36).

The effect of potassium on NCC is opposite to that of sodium chloride: a high salt diet suppresses NCC, while a low salt diet activates the transporter (33,37). How does the kidney handle the combination of high potassium/low sodium or low potassium/high potassium, in which there are opposing signals on NCC? In both cases, the potassium signal appears to dominate. On a high potassium, low sodium diet, NCC is suppressed (30). This is consistent with human data showing that increasing dietary potassium increases urinary sodium excretion, even in subjects on a low sodium diet consisting of 50 mEq (1.1 g) Na^+ /day (38). In animals on a low potassium, high sodium diet, NCC is activated (39,40), and this is also observed in human subjects, as determined by examination of phospho- and total NCC in urinary exosomes (40). Because the typical Western diet is both high in sodium and low in potassium, the stimulation of NCC by a low potassium diet, even in the face of a high sodium intake, leads to increased NaCl reabsorption by the kidney and hypertension (40).

To summarize, high potassium inhibits sodium chloride reabsorption in the distal convoluted tubule, shunting sodium downstream to the aldosterone-sensitive distal nephron, where reabsorption through the epithelial sodium channel generates a lumen-negative charge that drives potassium secretion. Conversely, low potassium activates sodium chloride reabsorption in the distal convoluted tubule (Figure 2).

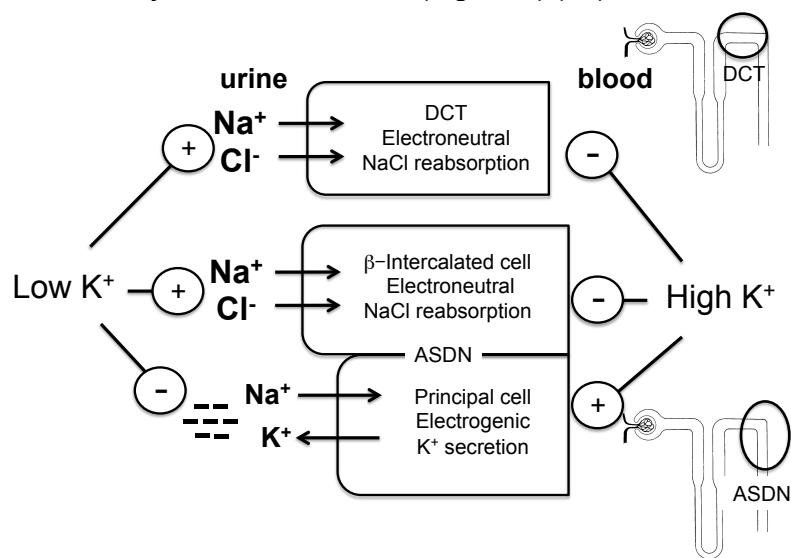


Figure 2. Summary of dietary potassium effects on the thiazide-sensitive sodium chloride cotransporter (NCC). High dietary potassium intake inhibits NCC, increasing sodium delivery to the more distal ASDN where potassium secretion occurs (Figure 1), while low dietary potassium stimulates the transporter. This occurs in both low and high dietary sodium conditions. Thus, in the face of a low potassium, high sodium diet, NCC is activated and NaCl reabsorption is increased, resulting in extracellular volume expansion and hypertension.

Modes of sodium reabsorption in the aldosterone-sensitive distal nephron

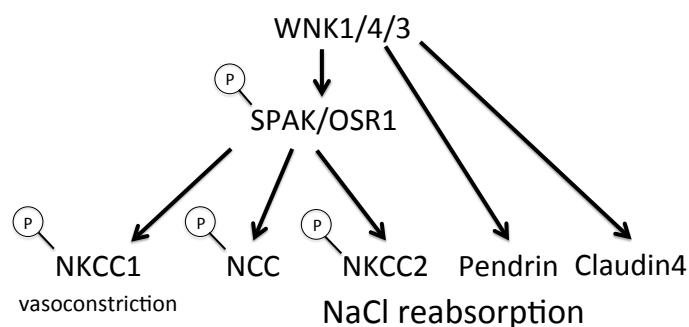
In the aldosterone-sensitive distal nephron, there are three “modes” of sodium reabsorption, which influence the degree of potassium secretion. Electrogenic reabsorption of sodium by the principal cell, which generates a negative charge in the tubule lumen, can either drive potassium secretion, as described above, or, alternatively, can drive paracellular chloride reabsorption (20). Claudin-4 and claudin-8 are components of the paracellular pathway that mediate chloride flux (41). Knockout of either claudin-4 or claudin-8 in mice results in renal salt wasting, and, in the case of claudin-8 knockout, hypokalemia (42,43). Whether the paracellular pathway is regulated by dietary potassium has not been examined. A third pathway is electroneutral sodium chloride reabsorption through non- α -non- β - and β -intercalated cells (44), which are also known as “pendrin-positive intercalated cells” based on the presence of the pendrin transporter. Recent work has elucidated the transporters involved in this mechanism, which is energized by the basolateral vacuolar H^+ -ATPase (45,46). The chloride/bicarbonate exchanger, pendrin, and the sodium-dependent chloride-bicarbonate exchanger (NDCBE, also called SLC4A8) mediate parallel sodium chloride reabsorption on the apical membrane, while the sodium/bicarbonate cotransporter (NBC, also called SLC4A9) and an unknown chloride channel mediate exit across the basolateral membrane (47).

In conditions of volume depletion or low sodium intake, all modes of sodium reabsorption in the distal nephron are stimulated: electroneutral sodium chloride reabsorption by the sodium chloride cotransporter in the distal convoluted tubule (48); electroneutral sodium chloride reabsorption by the pendrin-positive intercalated cell (47); and sodium reabsorption by the epithelial sodium channel in the principal cell of the aldosterone-sensitive distal nephron (49,50). However, sodium reabsorption by more upstream segments typically reduces delivery to the principal cell, thereby limiting potassium excretion. Like low sodium, low potassium also stimulates sodium chloride reabsorption by the distal convoluted tubule, as discussed above. The pendrin-positive intercalated cell is also potassium-sensitive, with higher expression of transporters on relatively lower potassium diets (51). In contrast, epithelial sodium channel activity in the ASDN principal cell is suppressed in conditions of low dietary potassium, even when dietary sodium is also low (Figure 3) (34).

Figure 3. Effects of potassium intake on electroneutral vs. electrogenic Na^+ reabsorption. Similar to a low sodium diet, low dietary potassium intake stimulates electroneutral NaCl reabsorption, decreasing the availability of sodium to ENaC in the ASDN principal cell and thereby limiting K^+ secretion. A low potassium diet also directly inhibits ENaC activity. High dietary potassium has the opposite effect.

Intrarenal paracrine regulation of the distal nephron by the proximal tubule

What homeostatic responses occur in the kidney as a result of volume depletion and hypokalemia? A recent paper illustrates an integrated response and unveils interesting paracrine regulation between the proximal tubule and distal nephron (52). In this study,


STE20/SPS1-related proline/alanine-rich kinase (SPAK) was knocked out. SPAK is a key activator of NCC, as discussed below, and the SPAK knockout mice have a Gitelman's-like phenotype, with renal salt wasting, volume contraction, and mild hypokalemia (~3.4 mEq/L) (52-54); this phenotype is similar to chronic thiazide administration. In response to volume depletion, there is upregulation of the pendrin-positive intercalated cell: the number of these cells increases relative to α -intercalated cells, probably through the activation of Notch signaling, and there is upregulation of the transport machinery in the pendrin-positive intercalated cell (52). Ammoniagenesis is upregulated in the proximal cell, presumably in response to hypokalemia. During ammoniagenesis, glutamine is metabolized to α -ketoglutarate. In the SPAK knockout mice, there is a change in the proximal tubule transport machinery that favors transport of the α -ketoglutarate into the lumen, and there is a three-fold increase in urinary α -ketoglutarate levels (52). Prior work showed that α -ketoglutarate stimulates sodium chloride reabsorption by the pendrin-positive intercalated cell, an effect requiring the α -ketoglutarate seven transmembrane receptor, Oxgr1. α -ketoglutarate also appears to inhibit sodium reabsorption through ENaC in the principal cell (55). Indeed, Oxgr1 is upregulated in the pendrin-positive intercalated cell in the SPAK knockout mice (52). Upregulation of electroneutral sodium chloride reabsorption through the pendrin-positive intercalated cell will decrease sodium availability to ENaC, helping to limit potassium losses. Since the pendrin-positive intercalated cell also secretes bicarbonate, metabolic alkalosis is also limited (55).

The importance of the pendrin-positive intercalated cell is also illustrated by findings from mice lacking the sodium chloride cotransporter. Mice in which both NCC and pendrin are knocked out have a more dramatic degree of renal salt wasting, volume depletion, and metabolic alkalosis than is seen when either transporter is knocked out individually (56). Similarly, individuals with Pendred syndrome, carrying mutations in pendrin, typically do not have renal manifestations at baseline. However, upon challenge with a thiazide diuretic, a child with Pendred syndrome rapidly developed severe volume depletion and hypokalemic metabolic alkalosis (57). A second patient with Pendred syndrome similarly developed severe hypokalemic metabolic alkalosis during two separate acute illnesses, one in which she had been vomiting and a second with severe infection (58).

The role of the WNK-SPAK/OSR1 signaling pathway

The first With-no-lysine (WNK) kinase was cloned at UT Southwestern in 2000 by Melanie Cobb and colleagues (59). The following year, Rick Lifton's group showed that WNK1 and WNK4 were mutated in a human disorder, pseudohypoaldosteronism type II (also called Gordon's syndrome or familial hyperkalemia with hypertension), characterized by hypertension and hyperkalemia (60). Subsequent work showed that WNKs phosphorylate and activate two related downstream kinases, SPAK and oxidative-stress response (OSR1) (61-63). SPAK and OSR1 then phosphorylate the N-termini of the related sodium-coupled chloride cotransporters, which include NCC and the sodium-potassium-2-chloride cotransporters, NKCC1 and NKCC2, resulting in transporter activation (28,61,63-69). In fact, WNK-SPAK/OSR1 regulation of ion flux through NKCCs is evolutionarily ancient: this pathway regulates transepithelial potassium flux and fluid secretion in the *Drosophila* renal tubule (70,71). WNK1 and WNK4 also have a positive regulatory effect on the pendrin-positive intercalated cell (51) and may also positively regulate the paracellular Cl^- reabsorption pathway in the ASDN (72,73). *In vivo* studies have confirmed the importance of WNK-SPAK/OSR1 signaling in stimulating sodium reabsorption through NCC in the distal convoluted tubule and NKCC2 in the thick ascending limb (26,53,54,74-79). In addition, WNK1 and WNK3 regulate vascular contractility through their regulation of NKCC1 in the vasculature (53,80,81). Thus, WNKs overall promote renal NaCl reabsorption and vasoconstriction (Figure 4), explaining the hypertensive phenotype of gain-of-function alleles of WNK1 and WNK4. The stimulation of electroneutral sodium chloride reabsorption, as well as the

inhibitory effects of WNK1 and WNK4 on the ASDN K⁺ secretory channel ROMK (renal outer medullary K⁺ channel, Kir1.1) (82-86), explains hyperkalemia in these patients.

Because WNK-SPAK/OSR1 signaling is a key regulator of NCC, recent work has focused on the effects of dietary potassium on the WNK-SPAK/OSR1 pathway. One study found that, although total amounts of phospho-SPAK (the active form of the kinase) are increased in cortical homogenates in response to a high-potassium diet, the subcellular distribution of phospho-SPAK was shifted (30). A low potassium diet increases WNK phosphorylation (40), as well as SPAK phosphorylation (32,35,40). This likely explains at least part of the increase in NCC phosphorylation. However, at least part of the upregulation in NCC phosphorylation appears to be independent of SPAK and OSR1 (32,35,40), suggesting the existence of an additional “potassium-sensitive” kinase.

An unsolved mystery is the mechanism by which the WNK-SPAK/OSR1 pathway senses changes in dietary potassium. One proposal is that changes in extracellular potassium alter the voltage of the distal convoluted cell, driving changes in intracellular Cl⁻ (40). Work performed at UT Southwestern recently proved that WNK is a chloride-sensitive kinase: chloride binds directly to the active site of WNK, inhibiting its autophosphorylation and activation (87). In cells, WNK activation occurs when intracellular Cl⁻ is lowered. Whether this also occurs in the distal convoluted tubule, a transporting epithelium, is not known. Additionally, the effects of a low potassium diet on NCC phosphorylation are also seen in the absence of a change in serum potassium (40). Ongoing studies in my laboratory are investigating whether intracellular Cl⁻ regulates transepithelial ion transport.

Effects of angiotensin II and aldosterone

Another incompletely understood area is the integration of angiotensin and aldosterone signaling in the response to dietary sodium and potassium. A simple model is that aldosterone stimulates potassium secretion when angiotensin II levels are low, and promotes sodium reabsorption over potassium secretion when angiotensin II levels are high. However, two examples illustrate limitations of this model. First, both aldosterone and angiotensin II independently stimulate NCC phosphorylation when dietary sodium is low (88,89). However, as discussed above, in the face of a low sodium, high potassium diet – in which aldosterone is stimulated both by the low sodium AND the high potassium, and renin and angiotensin levels are similar to low sodium alone – NCC phosphorylation is suppressed (30). Thus, opposite effects on NCC phosphorylation are observed when angiotensin II and aldosterone levels are high, depending on dietary potassium intake. Indeed, experiments have shown that dietary potassium intake suppresses NCC phosphorylation independent of aldosterone or its downstream mediator Sgk1 (serum and glucocorticoid regulated kinase 1) (33,36). Second, aldosterone synthase knockout mice, which cannot make aldosterone, but which have elevated angiotensin II levels, are able to upregulate ENaC and handle moderate amounts of dietary

Figure 4. WNK kinases stimulate vasoconstriction and NaCl reabsorption. WNK kinases phosphorylate and activate two related kinases, SPAK and OSR1. SPAK and OSR1 phosphorylate the N-terminus of the related sodium-coupled chloride cotransporters, NKCC1 in the vasculature, NCC in the distal convoluted tubule, and NKCC2 in the thick ascending limb of the loop of Henle. In addition, WNKs have positive regulatory effects on pendrin in the β -intercalated cells and paracellular transport in the ASN, mediated by claudin-4. The overall effect of WNK signaling is to promote vasoconstriction and NaCl reabsorption.

potassium, but are unable to do so when treated with the angiotensin receptor blocker, losartan (90). There is some evidence that angiotensin II can directly stimulate sodium reabsorption through ENaC in isolated perfused cortical collecting ducts (91). Thus, at least in some situations, angiotensin II signaling appears important for maintaining potassium homeostasis in the face of dietary intake.

Additional work illustrates that aldosterone can have different effects depending on dietary potassium intake. Phosphorylation of the mineralocorticoid receptor on serine 843 occurs in the intercalated cell of the distal nephron and renders the mineralocorticoid receptor insensitive to aldosterone (51). According to this model, aldosterone upregulates the transport machinery of the pendrin-positive intercalated cell, which would increase NaCl reabsorption as discussed above. In conditions of volume depletion, angiotensin II signaling, or activation of WNK1 and WNK4, Ser 843 is dephosphorylated and the mineralocorticoid receptor is responsive to aldosterone (51). In contrast, in high potassium conditions, Ser 843 is phosphorylated and the intercalated cell is unresponsive to aldosterone (51). An unanswered question is how intercalated cells, which lack 11- β -hydroxysteroid dehydrogenase, protect themselves from activation of the mineralocorticoid receptor by cortisol.

Potassium: Foe – Deleterious Effects of Potassium Excess

Despite the benefits of potassium intake outlined above, potassium excess can be problematic in patients with impaired potassium excretion. The most dreaded complication is ventricular fibrillation (92) leading to sudden death. Indeed, hyperkalemia has been associated with increased risk of both ventricular arrhythmias and death (4,6,8). Therefore, the clinician must understand factors which predispose patients to developing hyperkalemia, and manage this electrolyte complication appropriately when it arises. Fortunately, novel therapies are in development that may advance treatment of hyperkalemia.

Risk factors for hyperkalemia

Potassium is the most abundant intracellular cation and its concentration in the extracellular space is low. This is due to the action of the Na⁺/K⁺-ATPase, which pumps three Na⁺ ions out of the cell in exchange for two K⁺ ions. Thus, 98% of total body potassium (~3400 mEq) is found in intracellular stores, chiefly in muscle, with smaller amounts in red blood cells, liver, and the remaining cells of the body. Only 2% (~65 mEq) of total body potassium is in the extracellular space (93). 90% of ingested potassium is excreted through the kidney, whereas 10% is excreted in stool (20). Thus, most cases of hyperkalemia are due either to abnormal shifts of potassium from the intracellular compartment to the extracellular compartment (eg rhabdomyolysis, tumor lysis), or to dysfunction of renal potassium excretion (94).

Because of the importance of aldosterone in maximizing renal potassium excretion, medications and conditions that impair the renin-angiotensin-aldosterone system (RAAS) are frequent culprits in the development of hyperkalemia (95). These include diabetes mellitus, advanced age, beta blockers and nonsteroidal anti-inflammatory drugs (NSAIDs), which decrease renin secretion; direct renin inhibitors; angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs); impaired aldosterone synthesis due to adrenal insufficiency or aldosterone synthase inhibitors (heparin, ketoconazole); mineralocorticoid receptor antagonists (spironolactone, eplerenone); and blockers of the epithelial sodium channel (amiloride, triamterene, trimethoprim and pentamidine) (95). Because 90% of potassium excretion occurs through the kidney, decreased glomerular filtration rate (GFR) is also a powerful predictor of hyperkalemia (2,4,8,96-98).

Recent studies have highlighted the ways in which multiple risk factors for hyperkalemia often exist in patients who develop overt hyperkalemia. Trimethoprim, which inhibits the epithelial sodium channel, is illustrative. In a randomized controlled trial of 97 outpatients treated for various infections with trimethoprim-sulfamethoxazole (TMP) vs. other antibiotics, serum potassium increased in 81% of the TMP group (99). In this relatively healthy population (mean age 46, creatinine 0.9 mg/dL, 17% diabetic), this was not clinically significant in most of the patients. However, three patients developed a serum potassium concentration of > 6 mEq/L; the mean age of these three patients was 63, two had a creatinine of > 1.1 mg/dL, and one was diabetic (99). A quartet of studies has examined the risk of hyperkalemia in older patients (>66 yo) prescribed an ACE inhibitor, ARB or the mineralocorticoid receptor antagonist spironolactone, who were subsequently prescribed TMP. Using a nested case-control design, the investigators demonstrated that TMP increased the risk of both hyperkalemia and sudden death in this population when compared to the control antibiotic, amoxicillin (100-103). Thus, deleterious effects are seen in the presence of a combination of three risk factors for hyperkalemia – older age, use of an ACE inhibitor, ARB or spironolactone, and use of trimethoprim. Another recent study found that, of patients admitted to an emergency room with hyperkalemia, 95% of patients with a serum potassium of > 7 mEq/L were taking at least one medication that interferes with potassium secretion, 75% were taking two such drugs, and 90% had an impaired GFR (104). In a third study, ACE inhibitors and trimethoprim were the most common medications associated with hyperkalemia in hospitalized patients, 70% of whom had underlying CKD (105). The concept of additive risks – either with dual RAAS blockade, or RAAS blockade in the context of congestive heart failure or chronic kidney disease – is also consistent with findings from clinical trials (106,107).

Aldosterone-independent potassium secretion

Two recent studies highlight that the risk of hyperkalemia from RAAS blockade is most pronounced within the first month of initiation. In the first study, 6575 hypertensive patients were studied. 40% were diabetic, 12% had stage 3 chronic kidney disease (CKD), and 25% were on RAAS blockade. Spironolactone was added at a mean dose of 42 mg (in non-CKD patients) or 36 mg (in CKD patients). At 4 weeks, serum potassium increased in both CKD and non-CKD patients, but by 8 weeks, serum potassium normalized in both groups. The incidence of hyperkalemia (serum potassium > 5 mEq/L) was 43% in the non-CKD group at 4 weeks and 50% in the CKD group, but returned to baseline levels of 3-4% by 8 weeks (97). A second study with a different design, a population-based case-control study in a cohort of patients with newly diagnosed congestive heart failure, also found that the odds of hyperkalemia were highest within the first month of initiation of an ACE inhibitor or spironolactone: in the 1st month, the odds ratio for hyperkalemia was 10.68 with spironolactone [95% confidence interval (CI), 6.61-17.26] and 5.47 with ACE inhibitor (95% CI, 3.66-8.19), whereas after 12 months, the odds ratio for spironolactone was 2.17 (95% CI, 1.76-2.66) and for ACE inhibitor was 1.39 (95% CI, 1.13-1.72) (96).

Several conclusions can be drawn from these studies. First, clinicians should monitor serum potassium early after initiation of RAAS blockers, with timely follow-up of abnormal results – an area that has been identified as a safety concern (108,109). Second, if hyperkalemia is mild, it may be possible to continue the RAAS blocker, as long as serum potassium is carefully monitored. The improvement in serum potassium that occurs over time is likely due to adaptive changes in the kidney. Although aldosterone is an important mediator of renal (and colonic) potassium excretion, abundant literature describes aldosterone-independent potassium secretion (110-115).

A recent paper examined potassium handling in aldosterone synthase knockout mice, which lack the ability to synthesize aldosterone. These mice could tolerate a moderate dietary

potassium load, but died on a very high potassium diet. The sodium chloride cotransporter was downregulated to promote distal sodium delivery, and both ENaC and ROMK were upregulated. Interestingly, angiotensin signaling appeared to play a permissive role for potassium secretion, since treatment with losartan rendered the mice unable to handle moderate dietary potassium (90). This is consistent with clinical data showing that dual RAAS blockade raises serum potassium more than single RAAS blockade (106,116). The aldosterone synthase knockout study also found that colonic potassium secretion was entirely aldosterone-dependent (90), consistent with recent clinical data showing that hyperkalemia complicates the use of eplerenone in patients on hemodialysis (117).

Preventing hyperkalemia in high-risk patients

The prevention of hyperkalemia in high-risk patients has previously been reviewed (95). Management includes discontinuation of NSAIDs and hyperkalemic herbal preparations; use of diuretics; correcting metabolic acidosis; and prescribing a low potassium diet. If these measures are unsuccessful, lower doses or discontinuation of medications that cause hyperkalemia may be necessary (95).

While hyperkalemia is problematic, hypokalemia is also associated with worse outcomes in patients with chronic kidney disease. For example, a potassium concentration below 4 mEq/L, even in the range of 3.5-3.9 mEq/L, was associated with increased mortality in a population with CKD and congestive heart failure (3). A second study also found a U-shaped association between serum potassium and mortality in patients with CKD, with increased mortality and end-stage renal disease in patients with a serum potassium below 4 mEq/L (2). Furthermore, an analysis of patients enrolled in the ONTARGET and TRANSCEND studies found an inverse correlation between dietary potassium intake and eGFR decline $\geq 30\%$ or chronic dialysis, or proteinuria, with decreased odds of these adverse outcomes at higher levels of dietary potassium, and increased odds with lower potassium intake (118). Thus, as with the general population, dietary potassium restriction is associated with increased morbidity, while even mild degrees of hypokalemia confer increased risk of mortality. Therefore, a low potassium diet should not routinely be prescribed in patients with normal serum potassium concentrations. However, there is a linear association between the risk of hyperkalemia and dietary potassium intake in patients with CKD, so patients should be appropriately monitored (118).

Hyperkalemia management

Management of hyperkalemia has been recently reviewed (119). Acutely, an electrocardiogram should be immediately obtained to assess for cardiac toxicity, and intravenous calcium administered if electrocardiographic changes are present. The second step involves shifting potassium from the extracellular space to the intracellular space using insulin and beta agonist therapy. These increase uptake of potassium through the Na^+/K^+ -ATPase into muscle. Interestingly, even in patients with “insulin resistance” in terms of glucose uptake in response to insulin, uptake of potassium is not impaired (120). Finally, potassium must be definitively eliminated either through the kidney, the gut, or dialysis. Because most potassium excretion is through the kidney, in a patient who is not oliguric or anuric, loop diuretics can be very effective in eliminating potassium by increasing distal delivery of sodium and distal flow rates. Large doses of a loop diuretic may be needed in patients with impaired GFR. For patients with hypovolemia, concomitant administration of isotonic fluids can help prevent worsening volume depletion, and in patients with a prerenal decrease in GFR due to hypovolemia, saline alone may be sufficient to improve GFR and resolve hyperkalemia.

Currently, sodium polystyrene sulfonate (SPS) is the only approved potassium-binding resin in the United States for gastrointestinal elimination of potassium. However, the safety of this

medication was called into question when reports began to emerge of cases of colonic necrosis (121), and SPS with 70% sorbitol now carries a black box warning (122). A more recent study linked prescriptions of SPS to pathologic diagnoses of colonic necrosis. Of 1860 outpatient prescriptions, there were no cases of colonic necrosis. Of 5144 inpatient prescriptions, 3 cases of colonic necrosis occurred, for an incidence of 0.14% and a number needed to harm of 1395 (123). The three patients who developed this complication were > 65 years old, in the intensive care unit, and had an estimated GFR of < 30 ml/min (123). Another potential adverse effect of SPS is extracellular volume expansion: a 60 g dose of SPS contains 65 mEq of sodium.

A second question that has been raised is whether SPS is effective in lowering potassium (119,121). One of the largest studies to examine this question evaluated 122 inpatients in a single-center Veterans Administration hospital. The mean age was 69 yo, 79% of the patients had hypertension, 34% had diabetes mellitus, 38% had CKD, 69% had acute kidney injury, 26% congestive heart failure, and 49% were prescribed a medication known to cause hyperkalemia. The investigators evaluated the response to a single dose of SPS. They observed a dose-dependent decrease in serum potassium, ranging from 0.82 ± 0.48 mEq/L for the 15 g dose, to a 1.40 ± 0.42 mEq/L decrease for the 60 g dose. 94% of patients normalized serum potassium with a single dose, though the mean starting potassium concentration was < 6 mEq/L in all four groups (124). A study of 154 hyperkalemic episodes in hospitalized patients, 95% of which were treated with SPS, also demonstrated dose-dependent decreases in serum potassium concentration after SPS administration (105).

RAAS blockers are effective for the treatment of conditions which simultaneously predispose to hyperkalemia, such as congestive heart failure and diabetic nephropathy (125-129). Given the limitations of SPS outlined above, intense effort has been focused on developing new potassium-lowering drugs. Two agents are in advanced clinical trials. Patiromer, also known as RLY5016, is a nonabsorbed polymer that binds potassium in the gastrointestinal tract. Three recent studies have examined the safety and efficacy of this agent. PEARL-HF examined 105 patients with heart failure with an indication for spironolactone who either had CKD and were receiving ACE-I, ARB or beta blocker therapy, or who had a documented history of discontinuation of a RAAS blocker or beta blocker due to hyperkalemia. Patients were randomized to receive spironolactone either with or without patiromer and were monitored for 4 weeks. Potassium increased in the spironolactone + placebo group, with 25% of patients experiencing $K > 5.5$ mEq/L during the study, but decreased in the spironolactone + patiromer group, with 7% of patients experiencing $K > 5.5$ mEq/L. However, there was a 47% incidence of serum $K < 4$ mEq/L. Hypomagnesemia also was more common in the patiromer group, with 24% of patients developing serum $Mg^{2+} < 1.8$ mg/dL, as were gastrointestinal disorders (130). OPAL-HF examined patients with chronic kidney disease, evenly split between stages 3 and 4 CKD, on RAAS blockade; 57% of the subjects were diabetic, 42% had heart failure, 17% were on dual RAAS blockade and 54% were on diuretics. In the single-blind treatment phase, 76% of the 237 patients on patiromer maintained a potassium concentration in the target range of 3.8 to 5 mEq/L during 4 weeks of study. Dose-adjustments of patiromer were required in 60% of patients, mostly on days 3 and 7. The 107 patients who achieved a serum potassium concentration in the target range by 4 weeks were then randomized to a placebo-controlled, single-blind randomized withdrawal phase. By the end of 8 weeks, 43% of patients in the patiromer arm developed hyperkalemia at some point, as compared to 90% in the placebo group. 94% of patients in the patiromer arm were able to continue RAAS blockers, as compared to only 44% in the placebo group. The main adverse events were constipation and hypomagnesemia, which required magnesium replacement in 9 patients (131). AMETHYST-DN examined 306 patients with diabetic nephropathy on dual RAAS blockade with an ACE-I or ARB and spironolactone. Similar potassium-lowering efficacy was seen as compared to OPAL-HF, this time with more prolonged drug treatment to one year. The most common adverse events were constipation and hypomagnesemia, and hypokalemia ($K < 3.5$ mEq/L) was seen in 5.6%

of patients. 30% of patients discontinued treatment (132). Patiromer releases calcium in exchange for potassium. No clinically relevant changes in calcium or phosphate levels were observed in AMETHYST-DN (132). However, current guidelines suggest limiting calcium intake in patients with CKD due to risk for vascular calcification (133), and whether calcium release from patiromer will be problematic over time is not known. In summary, patiromer effectively decreases serum potassium concentrations in high-risk patients on RAAS blockers, including those with heart failure, chronic kidney disease, and diabetic nephropathy. The most frequent adverse events are hypomagnesemia and gastrointestinal side effects, but the number of patients studied (648) has been relatively small and the longest follow-up to date has been one year. Furthermore, whether patiromer has beneficial effects on clinical outcomes beyond hyperkalemia is unknown.

Sodium zirconium cyclosilicate, also known as ZS-9, is a non-absorbed microporous compound whose pore size renders it highly selective for potassium ion as compared to calcium or magnesium ions (134). ZS-9 has been evaluated in three clinical trials to date. The first trial was a randomized, double-blind placebo-controlled dose-escalation study that examined the effect of ZS-9 at 3 doses over 2 days in 90 patients with stage 3 chronic kidney disease and serum potassium between 5.0 and 6.0 mEq/L; mean baseline potassium was 5.0-5.2 mEq/L. ZS-9 dose-dependently lowered serum potassium (135). A phase 3 trial used a two-stage, double-blind strategy to evaluate ZS-9 in 753 patients. This study enrolled adults with a serum potassium of 5.0 to 6.5 mEq/L. Patients were randomized to receive placebo or one of 4 doses of ZS-9 for 48 hours. Those who achieved a serum potassium of 3.5 to 4.9 mEq/L (543 patients) were then randomized to receive either the same ZS-9 dose as in the initial stage, or placebo, and were followed for an additional 2 weeks. 75% of patients had CKD, 67% were on RAAS blockers, 60% had diabetes, and 40% had heart failure. ZS-9 dose-dependently lowered serum potassium during the first 48 hours. In patients randomized to placebo in the second stage, serum potassium increased, whereas patients in the ZS-9 arm maintained a stable serum potassium concentration. Rates of adverse events were similar between the ZS-9 and placebo groups (136). The HARMONIZE trial evaluated 258 patients. 66% had CKD, 36% heart failure, 66% diabetes mellitus, and 70% were on a RAAS blocker. All patients were treated with 10 g open-label ZS-9 for 2 days. 92% achieved normokalemia, with a median time to normalization of 2.2 hours. These patients were then randomized to placebo or one of three doses of ZS-9, and were followed for an additional 4 weeks. There was a dose-dependent effect of ZS-9 on the mean serum potassium. Between 80% (lowest dose) and 94% (highest dose) of patients on ZS-9 maintained serum K < 5.1 mEq/L, as compared to 46% of the placebo group. ~10% of patients became hypokalemic. More patients in the highest-dose group developed edema (14%), but this group also contained a higher proportion of patients with CKD and heart failure (137). Finally, the investigators of the prior trials analyzed 45 patients with baseline serum potassium of 6.0 mEq/L who received a 10 g dose of ZS-9. They reported that after a single 10 g dose, serum potassium decreased by 0.4 mEq/L at 1 hour, 0.6 mEq/L at 2 hours, and 0.7 mEq/L at 4 hours. The median time to a serum potassium level < 6.0 mEq/L was 1.07 hours, and the median time to a serum potassium level < 5.5 mEq/L was 4 hours (138). Like patiromer, the effects of ZS-9 on clinical outcomes beyond serum potassium concentration have not been evaluated.

Summary

Dietary potassium intake lowers blood pressure and is associated with decreased risks of cardiovascular morbidity and overall mortality. Some of the benefits from potassium are likely due to the interrelated handling of sodium and potassium in the kidney. Specifically, potassium inhibits sodium reabsorption by the kidney, while a low potassium diet enhances renal sodium reabsorption, even with a concomitant high sodium diet. Therefore, current guidelines recommend dietary potassium intake in the range of 90 to 120 mmol/day, well above usual

intake in American and worldwide populations. In some patients, however, excess dietary potassium intake results in hyperkalemia. Patients at risk include older patients and those with chronic kidney disease, congestive heart failure, or diabetes mellitus, especially with concomitant use of medications that inhibit the renin-angiotensin-aldosterone system, whether as an on-target effect (eg ACE inhibitors, angiotensin receptor blockers or mineralocorticoid receptor antagonists), or as an off-target effect (eg trimethoprim). Appropriate monitoring is required when using these beneficial medications in high-risk populations. Management of hyperkalemia has not changed in recent years, but concerns about the toxicity of sodium polystyrene sulfonate have led to the development of two new drugs, patiromer and sodium zirconium cyclosilicate, that may be approved for use in the near future.

REFERENCES

1. Cohen, H. W., Madhavan, S., and Alderman, M. H. (2001) High and low serum potassium associated with cardiovascular events in diuretic-treated patients. *Journal of hypertension* **19**, 1315-1323
2. Korgaonkar, S., Tilea, A., Gillespie, B. W., Kiser, M., Eisele, G., Finkelstein, F., Kotanko, P., Pitt, B., and Saran, R. (2010) Serum potassium and outcomes in CKD: insights from the RRI-CKD cohort study. *Clinical journal of the American Society of Nephrology : CJASN* **5**, 762-769
3. Bowling, C. B., Pitt, B., Ahmed, M. I., Aban, I. B., Sanders, P. W., Mujib, M., Campbell, R. C., Love, T. E., Aronow, W. S., Allman, R. M., Bakris, G. L., and Ahmed, A. (2010) Hypokalemia and outcomes in patients with chronic heart failure and chronic kidney disease: findings from propensity-matched studies. *Circulation. Heart failure* **3**, 253-260
4. Jain, N., Kotla, S., Little, B. B., Weideman, R. A., Brilakis, E. S., Reilly, R. F., and Banerjee, S. (2012) Predictors of hyperkalemia and death in patients with cardiac and renal disease. *The American journal of cardiology* **109**, 1510-1513
5. Sinha, A. D., and Agarwal, R. (2013) Chronic renal disease progression: treatment strategies and potassium intake. *Seminars in nephrology* **33**, 290-299
6. Goyal, A., Spertus, J. A., Gosch, K., Venkitachalam, L., Jones, P. G., Van den Berghe, G., and Kosiborod, M. (2012) Serum potassium levels and mortality in acute myocardial infarction. *JAMA : the journal of the American Medical Association* **307**, 157-164
7. Jensen, H. K., Brabrand, M., Vinholt, P. J., Hallas, J., and Lassen, A. T. (2015) Hypokalemia in acute medical patients: risk factors and prognosis. *The American journal of medicine* **128**, 60-67 e61
8. Einhorn, L. M., Zhan, M., Hsu, V. D., Walker, L. D., Moen, M. F., Seliger, S. L., Weir, M. R., and Fink, J. C. (2009) The frequency of hyperkalemia and its significance in chronic kidney disease. *Archives of internal medicine* **169**, 1156-1162
9. Murray, C. J., and Lopez, A. D. (2013) Measuring the global burden of disease. *The New England journal of medicine* **369**, 448-457
10. Keith, N. M., and Binger, M. W. (1935) Diuretic action of potassium. *J Amer Med Assoc* **105**, 1584-1591
11. Barker, M. (1932) Edema as influenced by a low ratio of sodium to potassium intake: Clinical observations. *J Amer Med Assoc* **98**, 2193-2197
12. Aburto, N. J., Hanson, S., Gutierrez, H., Hooper, L., Elliott, P., and Cappuccio, F. P. (2013) Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. *Bmj* **346**, f1378
13. (2005) *Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate*, The National Academies Press, Washington, DC
14. Mente, A., O'Donnell, M. J., Rangarajan, S., McQueen, M. J., Poirier, P., Wielgosz, A., Morrison, H., Li, W., Wang, X., Di, C., Mony, P., Devanath, A., Rosengren, A., Oguz, A., Zatonska, K., Yusufali, A. H., Lopez-Jaramillo, P., Avezum, A., Ismail, N., Lanas, F., Puoane, T., Diaz, R., Kelishadi, R., Iqbal, R., Yusuf, R., Chifamba, J., Khatib, R., Teo, K., Yusuf, S., and Investigators, P. (2014) Association of urinary sodium and potassium excretion with blood pressure. *The New England journal of medicine* **371**, 601-611
15. Hedayati, S. S., Minhajuddin, A. T., Ijaz, A., Moe, O. W., Elsayed, E. F., Reilly, R. F., and Huang, C. L. (2012) Association of urinary sodium/potassium ratio with blood pressure: sex and racial differences. *Clinical journal of the American Society of Nephrology : CJASN* **7**, 315-322
16. Cogswell, M. E., Zhang, Z., Carriquiry, A. L., Gunn, J. P., Kuklina, E. V., Saydah, S. H., Yang, Q., and Moshfegh, A. J. (2012) Sodium and potassium intakes among US adults: NHANES 2003-2008. *The American journal of clinical nutrition* **96**, 647-657

17. O'Donnell, M., Mente, A., Rangarajan, S., McQueen, M. J., Wang, X., Liu, L., Yan, H., Lee, S. F., Mony, P., Devanath, A., Rosengren, A., Lopez-Jaramillo, P., Diaz, R., Avezum, A., Lanas, F., Yusoff, K., Iqbal, R., Ilow, R., Mohammadifard, N., Gulec, S., Yusufali, A. H., Kruger, L., Yusuf, R., Chifamba, J., Kabali, C., Dagenais, G., Lear, S. A., Teo, K., Yusuf, S., and Investigators, P. (2014) Urinary sodium and potassium excretion, mortality, and cardiovascular events. *The New England journal of medicine* **371**, 612-623
18. Womersley, R. A., and Darragh, J. H. (1955) Potassium and Sodium Restriction in the Normal Human. *Journal of Clinical Investigation* **34**, 456-461
19. Krishna, G. G., Miller, E., and Kapoor, S. (1989) Increased Blood-Pressure during Potassium-Depletion in Normotensive Men. *New Engl J Med* **320**, 1177-1182
20. Malnic, G., Giebisch, G., Muto, S., Wang, W., Bailey, M. A., and Satlin, L. M. (2013) Chapter 49 - Regulation of K⁺ Excretion. in *Seldin and Giebisch's The Kidney (Fifth Edition)* (Caplan, R. J. A. W. M. ed.), Academic Press. pp 1659-1715
21. Welling, P. A. (2013) Regulation of renal potassium secretion: molecular mechanisms. *Seminars in nephrology* **33**, 215-228
22. Brandis, M., Keyes, J., and Windhager, E. E. (1972) Potassium-induced inhibition of proximal tubular fluid reabsorption in rats. *Am J Physiol* **222**, 421-427
23. Stokes, J. B. (1982) Consequences of potassium recycling in the renal medulla. Effects of ion transport by the medullary thick ascending limb of Henle's loop. *J Clin Invest* **70**, 219-229
24. Battilana, C. A., Dobyan, D. C., Lacy, F. B., Bhattacharya, J., Johnston, P. A., and Jamison, R. L. (1978) Effect of chronic potassium loading on potassium secretion by the pars recta or descending limb of the juxamedullary nephron in the rat. *J Clin Invest* **62**, 1093-1103
25. Higashihara, E., and Kokko, J. P. (1985) Effects of aldosterone on potassium recycling in the kidney of adrenalectomized rats. *Am J Physiol* **248**, F219-227
26. Cheng, C. J., Truong, T., Baum, M., and Huang, C. L. (2012) Kidney-specific WNK1 inhibits sodium reabsorption in the cortical thick ascending limb. *Am J Physiol Renal Physiol* **303**, F667-673
27. Pacheco-Alvarez, D., Cristobal, P. S., Meade, P., Moreno, E., Vazquez, N., Munoz, E., Diaz, A., Juarez, M. E., Gimenez, I., and Gamba, G. (2006) The Na⁺:Cl⁻ cotransporter is activated and phosphorylated at the amino-terminal domain upon intracellular chloride depletion. *J Biol Chem* **281**, 28755-28763
28. Richardson, C., Rafiqi, F. H., Karlsson, H. K., Moleleki, N., Vandewalle, A., Campbell, D. G., Morrice, N. A., and Alessi, D. R. (2008) Activation of the thiazide-sensitive Na⁺:Cl⁻ cotransporter by the WNK-regulated kinases SPAK and OSR1. *J Cell Sci* **121**, 675-684
29. Wade, J. B., Fang, L., Coleman, R. A., Liu, J., Grimm, P. R., Wang, T., and Welling, P. A. (2011) Differential regulation of ROMK (Kir1.1) in distal nephron segments by dietary potassium. *Am J Physiol Renal Physiol* **300**, F1385-1393
30. van der Lubbe, N., Moes, A. D., Rosenbaek, L. L., Schoep, S., Meima, M. E., Danser, A. H., Fenton, R. A., Zietse, R., and Hoorn, E. J. (2013) K⁺-induced natriuresis is preserved during Na⁺ depletion and accompanied by inhibition of the Na⁺:Cl⁻ cotransporter. *Am J Physiol Renal Physiol* **305**, F1177-1188
31. Rengarajan, S., Lee, D. H., Oh, Y. T., Delpire, E., Youn, J. H., and McDonough, A. A. (2014) Increasing plasma [K⁺] by intravenous potassium infusion reduces NCC phosphorylation and drives kaliuresis and natriuresis. *Am J Physiol Renal Physiol* **306**, F1059-1068
32. Castaneda-Bueno, M., Cervantes-Perez, L. G., Rojas-Vega, L., Arroyo-Garza, I., Vazquez, N., Moreno, E., and Gamba, G. (2014) Modulation of NCC activity by low and high K⁽⁺⁾ intake: insights into the signaling pathways involved. *Am J Physiol Renal Physiol* **306**, F1507-1519
33. Vallon, V., Schroth, J., Lang, F., Kuhl, D., and Uchida, S. (2009) Expression and phosphorylation of the Na⁺:Cl⁻ cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1. *Am J Physiol Renal Physiol* **297**, F704-712
34. Frindt, G., Houde, V., and Palmer, L. G. (2011) Conservation of Na⁺ vs. K⁺ by the rat cortical collecting duct. *Am J Physiol Renal Physiol* **301**, F14-20
35. Wade, J. B., Liu, J., Coleman, R., Grimm, P. R., Delpire, E., and Welling, P. A. (2015) SPAK-mediated NCC regulation in response to low-K⁺ diet. *Am J Physiol Renal Physiol* **308**, F923-931
36. Sorensen, M. V., Grossmann, S., Roesinger, M., Gresko, N., Todkar, A. P., Barnettler, G., Ziegler, U., Odermatt, A., Loffing-Cueni, D., and Loffing, J. (2013) Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. *Kidney Int* **83**, 811-824
37. Chiga, M., Rai, T., Yang, S. S., Ohta, A., Takizawa, T., Sasaki, S., and Uchida, S. (2008) Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone. *Kidney Int* **74**, 1403-1409
38. Turban, S., Thompson, C. B., Parekh, R. S., and Appel, L. J. (2013) Effects of sodium intake and diet on racial differences in urinary potassium excretion: results from the Dietary Approaches to Stop

- Hypertension (DASH)-Sodium trial. *American journal of kidney diseases : the official journal of the National Kidney Foundation* **61**, 88-95
39. Vitzthum, H., Seniuk, A., Schulte, L. H., Muller, M. L., Hetz, H., and Ehmke, H. (2014) Functional coupling of renal K⁺ and Na⁺ handling causes high blood pressure in Na⁺ replete mice. *The Journal of physiology* **592**, 1139-1157
40. Terker, A. S., Zhang, C., McCormick, J. A., Lazelle, R. A., Zhang, C., Meermeier, N. P., Siler, D. A., Park, H. J., Fu, Y., Cohen, D. M., Weinstein, A. M., Wang, W. H., Yang, C. L., and Ellison, D. H. (2015) Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. *Cell Metab* **21**, 39-50
41. Hou, J., Renigunta, A., Yang, J., and Waldegger, S. (2010) Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization. *Proc Natl Acad Sci U S A* **107**, 18010-18015
42. Gong, Y., Wang, J., Yang, J., Gonzales, E., Perez, R., and Hou, J. (2015) KLHL3 regulates paracellular chloride transport in the kidney by ubiquitination of claudin-8. *Proc Natl Acad Sci U S A* **112**, 4340-4345
43. Gong, Y., Yu, M., Yang, J., Gonzales, E., Perez, R., Hou, M., Tripathi, P., Hering-Smith, K. S., Hamm, L. L., and Hou, J. (2014) The Cap1-claudin-4 regulatory pathway is important for renal chloride reabsorption and blood pressure regulation. *Proc Natl Acad Sci U S A* **111**, E3766-3774
44. Terada, Y., and Knepper, M. A. (1990) Thiazide-sensitive NaCl absorption in rat cortical collecting duct. *Am J Physiol* **259**, F519-528
45. Gueutin, V., Vallet, M., Jayat, M., Peti-Peterdi, J., Corniere, N., Leviel, F., Sohet, F., Wagner, C. A., Eladari, D., and Chambrey, R. (2013) Renal beta-intercalated cells maintain body fluid and electrolyte balance. *J Clin Invest* **123**, 4219-4231
46. Chambrey, R., Kurth, I., Peti-Peterdi, J., Houillier, P., Purkerson, J. M., Leviel, F., Hentschke, M., Zdebik, A. A., Schwartz, G. J., Hubner, C. A., and Eladari, D. (2013) Renal intercalated cells are rather energized by a proton than a sodium pump. *Proc Natl Acad Sci U S A* **110**, 7928-7933
47. Leviel, F., Hubner, C. A., Houillier, P., Morla, L., El Moghrabi, S., Brideau, G., Hassan, H., Parker, M. D., Kurth, I., Kougioumtzes, A., Sinning, A., Pech, V., Riemondy, K. A., Miller, R. L., Hummler, E., Shull, G. E., Aronson, P. S., Doucet, A., Wall, S. M., Chambrey, R., and Eladari, D. (2010) The Na⁺-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na⁺ reabsorption process in the renal cortical collecting ducts of mice. *J Clin Invest* **120**, 1627-1635
48. Ellison, D. H., Velazquez, H., and Wright, F. S. (1989) Adaptation of the distal convoluted tubule of the rat. Structural and functional effects of dietary salt intake and chronic diuretic infusion. *J Clin Invest* **83**, 113-126
49. Nesterov, V., Dahlmann, A., Krueger, B., Bertog, M., Loffing, J., and Korbmacher, C. (2012) Aldosterone-dependent and -independent regulation of the epithelial sodium channel (ENaC) in mouse distal nephron. *Am J Physiol Renal Physiol* **303**, F1289-1299
50. Frindt, G., Sackin, H., and Palmer, L. G. (1990) Whole-cell currents in rat cortical collecting tubule: low-Na diet increases amiloride-sensitive conductance. *Am J Physiol* **258**, F562-567
51. Shibata, S., Rinehart, J., Zhang, J., Moeckel, G., Castaneda-Bueno, M., Stiegler, A. L., Boggon, T. J., Gamba, G., and Lifton, R. P. (2013) Mineralocorticoid receptor phosphorylation regulates ligand binding and renal response to volume depletion and hyperkalemia. *Cell Metab* **18**, 660-671
52. Grimm, P. R., Lazo-Fernandez, Y., Delpire, E., Wall, S. M., Dorsey, S. G., Weinman, E. J., Coleman, R., Wade, J. B., and Welling, P. A. (2015) Integrated compensatory network is activated in the absence of NCC phosphorylation. *J Clin Invest* **125**, 2136-2150
53. Yang, S. S., Lo, Y. F., Wu, C. C., Lin, S. W., Yeh, C. J., Chu, P., Sytwu, H. K., Uchida, S., Sasaki, S., and Lin, S. H. (2010) SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. *J Am Soc Nephrol* **21**, 1868-1877
54. Grimm, P. R., Taneja, T. K., Liu, J., Coleman, R., Chen, Y. Y., Delpire, E., Wade, J. B., and Welling, P. A. (2012) SPAK isoforms and OSR1 regulate sodium-chloride co-transporters in a nephron-specific manner. *J Biol Chem* **287**, 37673-37690
55. Tokonami, N., Morla, L., Centeno, G., Mordasini, D., Ramakrishnan, S. K., Nikolaeva, S., Wagner, C. A., Bonny, O., Houillier, P., Doucet, A., and Firsov, D. (2013) alpha-Ketoglutarate regulates acid-base balance through an intrarenal paracrine mechanism. *J Clin Invest* **123**, 3166-3171
56. Soleimani, M., Barone, S., Xu, J., Shull, G. E., Siddiqui, F., Zahedi, K., and Amlal, H. (2012) Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure. *Proc Natl Acad Sci U S A* **109**, 13368-13373
57. Pela, I., Bigozzi, M., and Bianchi, B. (2008) Profound hypokalemia and hypochloremic metabolic alkalosis during thiazide therapy in a child with Pendred syndrome. *Clinical nephrology* **69**, 450-453

58. Kandasamy, N., Fugazzola, L., Evans, M., Chatterjee, K., and Karet, F. (2011) Life-threatening metabolic alkalosis in Pendred syndrome. *European journal of endocrinology / European Federation of Endocrine Societies* **165**, 167-170
59. Xu, B., English, J. M., Wilsbacher, J. L., Stippec, S., Goldsmith, E. J., and Cobb, M. H. (2000) WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. *J Biol Chem* **275**, 16795-16801
60. Wilson, F. H., Disse-Nicodeme, S., Choate, K. A., Ishikawa, K., Nelson-Williams, C., Desitter, I., Gunel, M., Milford, D. V., Lipkin, G. W., Achard, J. M., Feely, M. P., Dussol, B., Berland, Y., Unwin, R. J., Mayan, H., Simon, D. B., Farfel, Z., Jeunemaitre, X., and Lifton, R. P. (2001) Human hypertension caused by mutations in WNK kinases. *Science* **293**, 1107-1112
61. Vitari, A. C., Deak, M., Morrice, N. A., and Alessi, D. R. (2005) The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. *Biochem J* **391**, 17-24
62. Moriguchi, T., Urushiyama, S., Hisamoto, N., Iemura, S., Uchida, S., Natsume, T., Matsumoto, K., and Shibuya, H. (2005) WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. *J Biol Chem* **280**, 42685-42693
63. Anselmo, A. N., Earnest, S., Chen, W., Juang, Y. C., Kim, S. C., Zhao, Y., and Cobb, M. H. (2006) WNK1 and OSR1 regulate the Na^+ , K^+ , 2Cl^- cotransporter in HeLa cells. *Proc Natl Acad Sci U S A* **103**, 10883-10888
64. Richardson, C., Sakamoto, K., de los Heros, P., Deak, M., Campbell, D. G., Prescott, A. R., and Alessi, D. R. (2011) Regulation of the NKCC2 ion cotransporter by SPAK-OSR1-dependent and -independent pathways. *J Cell Sci* **124**, 789-800
65. Rinehart, J., Kahle, K. T., de Los Heros, P., Vazquez, N., Meade, P., Wilson, F. H., Hebert, S. C., Gimenez, I., Gamba, G., and Lifton, R. P. (2005) WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl⁻ cotransporters required for normal blood pressure homeostasis. *Proc Natl Acad Sci U S A* **102**, 16777-16782
66. Gagnon, K. B., England, R., and Delpire, E. (2007) A single binding motif is required for SPAK activation of the Na-K-2Cl cotransporter. *Cell Physiol Biochem* **20**, 131-142
67. Gagnon, K. B., England, R., and Delpire, E. (2006) Volume sensitivity of cation-Cl⁻ cotransporters is modulated by the interaction of two kinases: Ste20-related proline-alanine-rich kinase and WNK4. *Am J Physiol Cell Physiol* **290**, C134-142
68. Dowd, B. F., and Forbush, B. (2003) PASK (proline-alanine-rich STE20-related kinase), a regulatory kinase of the Na-K-Cl cotransporter (NKCC1). *J Biol Chem* **278**, 27347-27353
69. Gagnon, K. B., England, R., and Delpire, E. (2006) Characterization of SPAK and OSR1, regulatory kinases of the Na-K-2Cl cotransporter. *Mol Cell Biol* **26**, 689-698
70. Rodan, A. R., Baum, M., and Huang, C. L. (2012) The Drosophila NKCC Ncc69 is required for normal renal tubule function. *Am J Physiol Cell Physiol* **303**, C883-894
71. Wu, Y., Schellinger, J. N., Huang, C. L., and Rodan, A. R. (2014) Hypotonicity Stimulates Potassium Flux through the WNK-SPAK/OSR1 Kinase Cascade and the Ncc69 Sodium-Potassium-2-Chloride Cotransporter in the Drosophila Renal Tubule. *J Biol Chem* **289**, 26131-26142
72. Yamauchi, K., Rai, T., Kobayashi, K., Sohara, E., Suzuki, T., Itoh, T., Suda, S., Hayama, A., Sasaki, S., and Uchida, S. (2004) Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. *Proc Natl Acad Sci U S A* **101**, 4690-4694
73. Kahle, K. T., Macgregor, G. G., Wilson, F. H., Van Hoek, A. N., Brown, D., Ardito, T., Kashgarian, M., Giebisch, G., Hebert, S. C., Boulpaep, E. L., and Lifton, R. P. (2004) Paracellular Cl⁻ permeability is regulated by WNK4 kinase: insight into normal physiology and hypertension. *Proc Natl Acad Sci U S A* **101**, 14877-14882
74. Castaneda-Bueno, M., Cervantes-Perez, L. G., Vazquez, N., Uribe, N., Kantesaria, S., Morla, L., Bobadilla, N. A., Doucet, A., Alessi, D. R., and Gamba, G. (2012) Activation of the renal $\text{Na}^+:\text{Cl}^-$ cotransporter by angiotensin II is a WNK4-dependent process. *Proc Natl Acad Sci U S A* **109**, 7929-7934
75. Ohta, A., Rai, T., Yui, N., Chiga, M., Yang, S. S., Lin, S. H., Sohara, E., Sasaki, S., and Uchida, S. (2009) Targeted disruption of the Wnk4 gene decreases phosphorylation of Na-Cl cotransporter, increases Na excretion and lowers blood pressure. *Hum Mol Genet* **18**, 3978-3986
76. Rafiqi, F. H., Zuber, A. M., Glover, M., Richardson, C., Fleming, S., Jovanovic, S., Jovanovic, A., O'Shaughnessy, K. M., and Alessi, D. R. (2010) Role of the WNK-activated SPAK kinase in regulating blood pressure. *EMBO molecular medicine* **2**, 63-75
77. Lin, S. H., Yu, I. S., Jiang, S. T., Lin, S. W., Chu, P., Chen, A., Sytwu, H. K., Sohara, E., Uchida, S., Sasaki, S., and Yang, S. S. (2011) Impaired phosphorylation of $\text{Na}^+(\text{-})\text{K}^+(\text{-})\text{2Cl}^-(\text{-})$ cotransporter by oxidative stress-responsive kinase-1 deficiency manifests hypotension and Bartter-like syndrome. *Proc Natl Acad Sci U S A* **108**, 17538-17543

78. Takahashi, D., Mori, T., Nomura, N., Khan, M. Z., Araki, Y., Zeniya, M., Sohara, E., Rai, T., Sasaki, S., and Uchida, S. (2014) WNK4 is the major WNK positively regulating NCC in the mouse kidney. *Biosci Rep* **34**
79. Cheng, C. J., Yoon, J., Baum, M., and Huang, C. L. (2014) STE20/SPS1-related Proline/alanine-rich Kinase (SPAK) is Critical for Sodium Reabsorption in Isolated Perfused Thick Ascending Limb. *Am J Physiol Renal Physiol*, ajprenal 00493 02013
80. Bergaya, S., Faure, S., Baudrie, V., Rio, M., Escoubet, B., Bonnin, P., Henrion, D., Loirand, G., Achard, J. M., Jeunemaitre, X., and Hadchouel, J. (2011) WNK1 regulates vasoconstriction and blood pressure response to alpha 1-adrenergic stimulation in mice. *Hypertension* **58**, 439-445
81. Susa, K., Kita, S., Iwamoto, T., Yang, S. S., Lin, S. H., Ohta, A., Sohara, E., Rai, T., Sasaki, S., Alessi, D. R., and Uchida, S. (2012) Effect of heterozygous deletion of WNK1 on the WNK-OSR1/ SPAK-NCC/NKCC1/NKCC2 signal cascade in the kidney and blood vessels. *Clin Exp Nephrol* **16**, 530-538
82. Cope, G., Murthy, M., Golbang, A. P., Hamad, A., Liu, C. H., Cuthbert, A. W., and O'Shaughnessy, K. M. (2006) WNK1 affects surface expression of the ROMK potassium channel independent of WNK4. *J Am Soc Nephrol* **17**, 1867-1874
83. He, G., Wang, H. R., Huang, S. K., and Huang, C. L. (2007) Intersectin links WNK kinases to endocytosis of ROMK1. *J Clin Invest* **117**, 1078-1087
84. Lazrak, A., Liu, Z., and Huang, C. L. (2006) Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms. *Proc Natl Acad Sci U S A* **103**, 1615-1620
85. Wade, J. B., Fang, L., Liu, J., Li, D., Yang, C. L., Subramanya, A. R., Maouyo, D., Mason, A., Ellison, D. H., and Welling, P. A. (2006) WNK1 kinase isoform switch regulates renal potassium excretion. *Proc Natl Acad Sci U S A* **103**, 8558-8563
86. Kahle, K. T., Wilson, F. H., Leng, Q., Lalioti, M. D., O'Connell, A. D., Dong, K., Rapson, A. K., MacGregor, G. G., Giebisch, G., Hebert, S. C., and Lifton, R. P. (2003) WNK4 regulates the balance between renal NaCl reabsorption and K⁺ secretion. *Nature genetics* **35**, 372-376
87. Piala, A. T., Moon, T. M., Akella, R., He, H., Cobb, M. H., and Goldsmith, E. J. (2014) Chloride Sensing by WNK1 Involves Inhibition of Autophosphorylation. *Science signaling* **7**, ra41
88. van der Lubbe, N., Lim, C. H., Meima, M. E., van Veghel, R., Rosenbaek, L. L., Mutig, K., Danser, A. H., Fenton, R. A., Zietse, R., and Hoorn, E. J. (2012) Aldosterone does not require angiotensin II to activate NCC through a WNK4-SPAK-dependent pathway. *Pflugers Arch* **463**, 853-863
89. van der Lubbe, N., Lim, C. H., Fenton, R. A., Meima, M. E., Jan Danser, A. H., Zietse, R., and Hoorn, E. J. (2011) Angiotensin II induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter independent of aldosterone. *Kidney Int* **79**, 66-76
90. Todkar, A., Picard, N., Loffing-Cueni, D., Sorensen, M. V., Mihailova, M., Nesterov, V., Makhanova, N., Korbmacher, C., Wagner, C. A., and Loffing, J. (2015) Mechanisms of renal control of potassium homeostasis in complete aldosterone deficiency. *J Am Soc Nephrol* **26**, 425-438
91. Peti-Peterdi, J., Warnock, D. G., and Bell, P. D. (2002) Angiotensin II directly stimulates ENaC activity in the cortical collecting duct via AT(1) receptors. *J Am Soc Nephrol* **13**, 1131-1135
92. Petrov, D. B. (2012) Images in clinical medicine. An electrocardiographic sine wave in hyperkalemia. *The New England journal of medicine* **366**, 1824
93. Cheng, C. J., Kuo, E., and Huang, C. L. (2013) Extracellular potassium homeostasis: insights from hypokalemic periodic paralysis. *Seminars in nephrology* **33**, 237-247
94. Palmer, B. F. (2010) A physiologic-based approach to the evaluation of a patient with hyperkalemia. *American journal of kidney diseases : the official journal of the National Kidney Foundation* **56**, 387-393
95. Palmer, B. F. (2004) Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system. *The New England journal of medicine* **351**, 585-592
96. Michel, A., Martin-Perez, M., Ruigomez, A., and Garcia Rodriguez, L. A. (2015) Risk factors for hyperkalaemia in a cohort of patients with newly diagnosed heart failure: a nested case-control study in UK general practice. *European journal of heart failure* **17**, 205-213
97. Gwoo, S., Kim, Y. N., Shin, H. S., Jung, Y. S., and Rim, H. (2014) Predictors of hyperkalemia risk after hypertension control with aldosterone blockade according to the presence or absence of chronic kidney disease. *Nephron. Clinical practice* **128**, 381-386
98. Weinberg, J. M., Appel, L. J., Bakris, G., Gassman, J. J., Greene, T., Kendrick, C. A., Wang, X., Lash, J., Lewis, J. A., Pogue, V., Thornley-Brown, D., Phillips, R. A., African American Study of, H., and Kidney Disease Collaborative Research, G. (2009) Risk of hyperkalemia in nondiabetic patients with chronic kidney disease receiving antihypertensive therapy. *Archives of internal medicine* **169**, 1587-1594
99. Alappan, R., Buller, G. K., and Perazella, M. A. (1999) Trimethoprim-sulfamethoxazole therapy in outpatients: is hyperkalemia a significant problem? *American journal of nephrology* **19**, 389-394

100. Antoniou, T., Gomes, T., Juurlink, D. N., Loutfy, M. R., Glazier, R. H., and Mamdani, M. M. (2010) Trimethoprim-sulfamethoxazole-induced hyperkalemia in patients receiving inhibitors of the renin-angiotensin system: a population-based study. *Archives of internal medicine* **170**, 1045-1049
101. Antoniou, T., Gomes, T., Mamdani, M. M., Yao, Z., Hellings, C., Garg, A. X., Weir, M. A., and Juurlink, D. N. (2011) Trimethoprim-sulfamethoxazole induced hyperkalaemia in elderly patients receiving spironolactone: nested case-control study. *Bmj* **343**, d5228
102. Antoniou, T., Hollands, S., Macdonald, E. M., Gomes, T., Mamdani, M. M., Juurlink, D. N., Canadian Drug, S., and Effectiveness Research, N. (2015) Trimethoprim-sulfamethoxazole and risk of sudden death among patients taking spironolactone. *CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne* **187**, E138-143
103. Fralick, M., Macdonald, E. M., Gomes, T., Antoniou, T., Hollands, S., Mamdani, M. M., Juurlink, D. N., Canadian Drug, S., and Effectiveness Research, N. (2014) Co-trimoxazole and sudden death in patients receiving inhibitors of renin-angiotensin system: population based study. *Bmj* **349**, g6196
104. Muschart, X., Boulouffe, C., Jamart, J., Nougon, G., Gerard, V., de Canniere, L., and Vanpee, D. (2014) A determination of the current causes of hyperkalaemia and whether they have changed over the past 25 years. *Acta clinica Belgica* **69**, 280-284
105. Fordjour, K. N., Walton, T., and Doran, J. J. (2014) Management of hyperkalemia in hospitalized patients. *The American journal of the medical sciences* **347**, 93-100
106. Weir, M. R., and Rolfe, M. (2010) Potassium homeostasis and renin-angiotensin-aldosterone system inhibitors. *Clinical journal of the American Society of Nephrology : CJASN* **5**, 531-548
107. Juurlink, D. N., Mamdani, M. M., Lee, D. S., Kopp, A., Austin, P. C., Laupacis, A., and Redelmeier, D. A. (2004) Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. *The New England journal of medicine* **351**, 543-551
108. Moore, C., Lin, J., McGinn, T., and Halm, E. (2007) Factors associated with time to follow-up of severe hyperkalemia in the ambulatory setting. *American journal of medical quality : the official journal of the American College of Medical Quality* **22**, 428-437
109. Moore, C. R., Lin, J. J., O'Connor, N., and Halm, E. A. (2006) Follow-up of markedly elevated serum potassium results in the ambulatory setting: implications for patient safety. *American journal of medical quality : the official journal of the American College of Medical Quality* **21**, 115-124
110. Field, M. J., Stanton, B. A., and Giebisch, G. H. (1984) Differential acute effects of aldosterone, dexamethasone, and hyperkalemia on distal tubular potassium secretion in the rat kidney. *J Clin Invest* **74**, 1792-1802
111. Hirsch, D., Kashgarian, M., Boulaep, E. L., and Hayslett, J. P. (1984) Role of aldosterone in the mechanism of potassium adaptation in the initial collecting tubule. *Kidney Int* **26**, 798-807
112. Stanton, B., Pan, L., Deetjen, H., Guckian, V., and Giebisch, G. (1987) Independent effects of aldosterone and potassium on induction of potassium adaptation in rat kidney. *J Clin Invest* **79**, 198-206
113. Wingo, C. S., Seldin, D. W., Kokko, J. P., and Jacobson, H. R. (1982) Dietary modulation of active potassium secretion in the cortical collecting tubule of adrenalectomized rabbits. *J Clin Invest* **70**, 579-586
114. Young, D. B. (1988) Quantitative analysis of aldosterone's role in potassium regulation. *Am J Physiol* **255**, F811-822
115. Frindt, G., and Palmer, L. G. (2009) K⁺ secretion in the rat kidney: Na⁺ channel-dependent and -independent mechanisms. *Am J Physiol Renal Physiol* **297**, F389-396
116. Van Buren, P. N., Adams-Huet, B., Nguyen, M., Molina, C., and Toto, R. D. (2014) Potassium handling with dual renin-angiotensin system inhibition in diabetic nephropathy. *Clinical journal of the American Society of Nephrology : CJASN* **9**, 295-301
117. Walsh, M., Manns, B., Garg, A. X., Bueti, J., Rabbat, C., Smyth, A., Tyrwhitt, J., Bosch, J., Gao, P., Devereaux, P. J., and Wald, R. (2015) The Safety of Eplerenone in Hemodialysis Patients: A Noninferiority Randomized Controlled Trial. *Clinical journal of the American Society of Nephrology : CJASN*
118. Smyth, A., Dunkler, D., Gao, P., Teo, K. K., Yusuf, S., O'Donnell, M. J., Mann, J. F., Clase, C. M., Ontarget, and investigators, T. (2014) The relationship between estimated sodium and potassium excretion and subsequent renal outcomes. *Kidney Int* **86**, 1205-1212
119. Kovesdy, C. P. (2014) Management of hyperkalaemia in chronic kidney disease. *Nature reviews. Nephrology* **10**, 653-662
120. Nguyen, T. Q., Maalouf, N. M., Sakhaee, K., and Moe, O. W. (2011) Comparison of insulin action on glucose versus potassium uptake in humans. *Clinical journal of the American Society of Nephrology : CJASN* **6**, 1533-1539
121. Sterns, R. H., Rojas, M., Bernstein, P., and Chennupati, S. (2010) Ion-exchange resins for the treatment of hyperkalemia: are they safe and effective? *J Am Soc Nephrol* **21**, 733-735

122. (2011) Kayexelate (sodium polystyrene sulfonate) powder. Detailed view: safety labeling changes approved by FDA Center for Drug Evaluation and Research (CDER). <http://www.fda.gov/Safety/MedWatch/SafetyInformation/ucm186845.htm>.
123. Watson, M. A., Baker, T. P., Nguyen, A., Sebastianelli, M. E., Stewart, H. L., Oliver, D. K., Abbott, K. C., and Yuan, C. M. (2012) Association of prescription of oral sodium polystyrene sulfonate with sorbitol in an inpatient setting with colonic necrosis: a retrospective cohort study. *American journal of kidney diseases : the official journal of the National Kidney Foundation* **60**, 409-416
124. Kessler, C., Ng, J., Valdez, K., Xie, H., and Geiger, B. (2011) The use of sodium polystyrene sulfonate in the inpatient management of hyperkalemia. *Journal of hospital medicine* **6**, 136-140
125. Brenner, B. M., Cooper, M. E., de Zeeuw, D., Keane, W. F., Mitch, W. E., Parving, H. H., Remuzzi, G., Snapinn, S. M., Zhang, Z., Shahinfar, S., and Investigators, R. S. (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. *The New England journal of medicine* **345**, 861-869
126. Lewis, E. J., Hunsicker, L. G., Bain, R. P., and Rohde, R. D. (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. *The New England journal of medicine* **329**, 1456-1462
127. Lewis, E. J., Hunsicker, L. G., Clarke, W. R., Berl, T., Pohl, M. A., Lewis, J. B., Ritz, E., Atkins, R. C., Rohde, R., Raz, I., and Collaborative Study, G. (2001) Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. *The New England journal of medicine* **345**, 851-860
128. Pitt, B., Remme, W., Zannad, F., Neaton, J., Martinez, F., Roniker, B., Bittman, R., Hurley, S., Kleiman, J., Gatlin, M., Eplerenone Post-Acute Myocardial Infarction Heart Failure, E., and Survival Study, I. (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. *The New England journal of medicine* **348**, 1309-1321
129. Pitt, B., Zannad, F., Remme, W. J., Cody, R., Castaigne, A., Perez, A., Palensky, J., and Wittes, J. (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. *The New England journal of medicine* **341**, 709-717
130. Pitt, B., Anker, S. D., Bushinsky, D. A., Kitzman, D. W., Zannad, F., Huang, I. Z., and Investigators, P.-H. (2011) Evaluation of the efficacy and safety of RLY5016, a polymeric potassium binder, in a double-blind, placebo-controlled study in patients with chronic heart failure (the PEARL-HF) trial. *European heart journal* **32**, 820-828
131. Weir, M. R., Bakris, G. L., Bushinsky, D. A., Mayo, M. R., Garza, D., Stasiv, Y., Wittes, J., Christ-Schmidt, H., Berman, L., Pitt, B., and Investigators, O.-H. (2015) Patiromer in patients with kidney disease and hyperkalemia receiving RAAS inhibitors. *The New England journal of medicine* **372**, 211-221
132. Bakris, G. L., Pitt, B., Weir, M. R., Freeman, M. W., Mayo, M. R., Garza, D., Stasiv, Y., Zawadzki, R., Berman, L., Bushinsky, D. A., and Investigators, A.-D. (2015) Effect of Patiromer on Serum Potassium Level in Patients With Hyperkalemia and Diabetic Kidney Disease: The AMETHYST-DN Randomized Clinical Trial. *JAMA : the journal of the American Medical Association* **314**, 151-161
133. Kidney Disease: Improving Global Outcomes, C. K. D. M. B. D. W. G. (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). *Kidney international. Supplement*, S1-130
134. Stavros, F., Yang, A., Leon, A., Nuttall, M., and Rasmussen, H. S. (2014) Characterization of structure and function of ZS-9, a K⁺ selective ion trap. *PLoS One* **9**, e114686
135. Ash, S. R., Singh, B., Lavin, P. T., Stavros, F., and Rasmussen, H. S. (2015) A phase 2 study on the treatment of hyperkalemia in patients with chronic kidney disease suggests that the selective potassium trap, ZS-9, is safe and efficient. *Kidney Int*
136. Packham, D. K., Rasmussen, H. S., Lavin, P. T., El-Shahawy, M. A., Roger, S. D., Block, G., Qunibi, W., Pergola, P., and Singh, B. (2015) Sodium zirconium cyclosilicate in hyperkalemia. *The New England journal of medicine* **372**, 222-231
137. Kosiborod, M., Rasmussen, H. S., Lavin, P., Qunibi, W. Y., Spinowitz, B., Packham, D., Roger, S. D., Yang, A., Lerma, E., and Singh, B. (2014) Effect of sodium zirconium cyclosilicate on potassium lowering for 28 days among outpatients with hyperkalemia: the HARMONIZE randomized clinical trial. *JAMA : the journal of the American Medical Association* **312**, 2223-2233
138. Kosiborod, M., Peacock, W. F., and Packham, D. K. (2015) Sodium zirconium cyclosilicate for urgent therapy of severe hyperkalemia. *The New England journal of medicine* **372**, 1577-1578